In this paper we introduce CACTI-D, a significant enhancement of CACTI 5.0. CACTI-D adds support for modeling of commodity DRAM technology and support for main memory DRAM chip organization. CACTI-D enables modeling of the complete memory hierarchy with consistent models all the way from SRAM based L1 caches through main memory DRAMs on DIMMs. We illustrate the potential applicability of CACTI-D in the design and analysis of future memory hierarchies by carrying out a last level cache study for a multicore multithreaded architecture at the 32nm technology node. In this study we use CACTI-D to model all components of the memory hierarchy including L1, L2, last level SRAM, logic process based DRAM or commodity DRAM L3 caches, and main memory DRAM chips. We carry out architectural simulation using benchmarks with large data sets and present results of their execution time, breakdown of power in the memory hierarchy, and system energy-delay product for the different system configurations. We find that commodity DRAM technology is most attractive for stacked last level caches, with significantly lower energy-delay products.
This paper discusses die cost vs. performance tradeoffs for a PIM system that could serve as the memory system of a host processor. For an increase of less than twice the cost of a commodity DRAM part, it is possible to realize a performance speedup of nearly a factor of 4 on irregular applications. This cost efficiency derives from developing a custom multithreaded processor architecture and implementation style that is well-suited for embedding in a memory. Specifically, it takes advantage of the low latency and high row bandwidth to both simplify processor design-reducing area-as well as to improve processing throughput. To support our claims of cost and performance, we have used simulation, analysis of existing chips, and also designed and fully implemented a prototype chip, PIM Lite.
PIM Lite is a processor-in-memory prototype implemented in a 0.18 micron logic process. PIM Lite provides a complete working demonstration of a minimal-state, lightweight multithreaded processor with low-overhead thread swapping. Minimizing processor state by keeping thread state in memory and using a regular, tiled and memory-centric design greatly simplified VLSI development and testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.