Precise control of solid-state elastic waves’ mode content and coherence is of great use nowadays in reinforcing mechanical energy harvesting/storage, nondestructive material testing, wave-matter interaction, high sensitivity sensing, and information processing, etc. Its efficacy is highly dependent on having elastic transmission channels with lower loss and higher degree of freedom. Here, we demonstrate experimentally an elastic analog of the quantum spin Hall effects in a monolithically scalable configuration, which opens up a route in manipulating elastic waves represented by elastic pseudospins with spin-momentum locking. Their unique features including robustness and negligible propagation loss may enhance elastic planar-integrated circuit-level and system-level performance. Our approach promotes topological materials that can interact with solid-state phonons in both static and time-dependent regimes. It thus can be immediately applied to multifarious chip-scale topological phononic devices, such as path-arbitrary elastic wave-guiding, elastic splitters and elastic resonators with high-quality factors.
The quantum spin Hall effect lays the foundation for the topologically protected manipulation of waves, but is restricted to one-dimensional-lower boundaries of systems and hence limits the diversity and integration of topological photonic devices. Recently, the conventional bulkboundary correspondence of band topology has been extended to higher-order cases that enable explorations of topological states with codimensions larger than one such as hinge and corner states. Here, we demonstrate a higher-order quantum spin Hall effect in a twodimensional photonic crystal. Owing to the non-trivial higher-order topology and the pseudospin-pseudospin coupling, we observe a directional localization of photons at corners with opposite pseudospin polarizations through pseudospin-momentum-locked edge waves, resembling the quantum spin Hall effect in a higher-order manner. Our work inspires an unprecedented route to transport and trap spinful waves, supporting potential applications in topological photonic devices such as spinful topological lasers and chiral quantum emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.