Abstract. Epoxy/multiwall carbon nanotubes (MWCNT) composites were prepared using sodium salt of 6-aminohexanoic acid (SAHA) modified MWCNT and its effect properties of related composites were investigated. The composite prepared using a polar solvent, tetrahydrofuran exhibits better mechanical properties compared to those prepared using less polar solvent and without using solvent. The tensile properties and dynamic storage modulus was found to be increased as a result of modification of MWCNT with SAHA. This improvement in the tensile properties and dynamic mechanical properties of epoxy/MWCNT composite is a combined effect of cation-! interaction and chemical bonding. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were used to explain cation-! interaction between SAHA with MWCNT and chemical bonding of SAHA with epoxy resin. The effect of modification of MWCNT on morphology of a nanocomposite was confirmed by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The present approach does not disturb the ! electron clouds of MWCNT as opposed to chemical functionalization strategy.
An investigation was carried out to improve the dispersion of multiwall carbon nanotubes (MWCNTs) in the poly(ethylene oxide) (PEO) matrix using a half-neutralized sodium salt of dicarboxylic acid with various number of carbon atoms. The effects of nature of various modifiers on mechanical properties of PEO were investigated. Among various dicarboxylic acid salts, half neutralized adipic acid (HNAA) is found to be highly effective in achieving the improvement in mechanical and dynamic mechanical properties due to improved dispersion of MWCNT in the PEO matrix. The physical interaction of HNAA with MWCNT (cation-p interaction) has been established using Fourier transform infrared and Raman spectroscopic analyses. Scanning electron microscope and transmission electron microscope (TEM) studies clearly indicate the improvement in the level of dispersion of MWCNT due to the addition of HNAA. Crystallization behavior of the PEO/MWCNT composites made with unmodified and modified MWCNT were studied by differential scanning colorimetry. Our approach is a noncovalent one and does not destroy the p-electron clouds of MWCNT as opposed to chemical functionalization techniques and particularly attractive because of possibility of preserving the structural integrity of nanotubes as well as improved phase adhesion with polymer matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.