This article exhibits a reward-based incentive mechanism for file caching in delay-tolerant networks. In delay-tolerant networks, nodes use relay's store-carry-forward paradigm to reach the final destination. Thereby, relay nodes may store data in their buffer and carry it till an appropriate contact opportunity with destination arises. However, the relays are not always willing to assist data forwarding due to a limited energy or a low storage capacity. Our proposal suggests a reward mechanism to uphold and to sustain cooperation among relay nodes. We model this distributed network interaction as a non-cooperative game. Namely, the source node offers to the relay nodes a positive reward if they accept to cache and to forward a given file successfully to a target destination, whereas the relay nodes may either accept or reject the source deal, depending on the reward attractiveness and on their battery status (their actual energy level). Next, full characterizations of both pure and mixed Nash equilibria are provided. Then, we propose three fully distributed algorithms to ensure convergence to the Nash equilibria (for both pure equilibrium and mixed equilibrium). Finally, we validate our proposal through extensive numerical examples and many learning simulations and draw some conclusions and insightful remarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.