Two-dimensional films of surface-active agents—from phospholipids and proteins to nanoparticles and colloids—stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic properties, but allows the interfacial microstructure to be directly visualized during deformation. Here we present a novel technique that combines active microrheology with fluorescence microscopy to visualize fluid interfaces as they deform under applied stress, allowing structure and rheology to be correlated on the micron-scale in monolayer films. We show that even simple, single-component lipid monolayers can exhibit viscoelasticity, history dependence, a yield stress and hours-long time scales for elastic recoil and aging. Simultaneous visualization of the monolayer under stress shows that the rich dynamical response results from the cooperative dynamics and deformation of liquid-crystalline domains and their boundaries.
We measure the elastic response of a free-standing lipid membrane to a local indentation by using an atomic force microscope. Starting point is a planar gold-coated alumina substrate with a chemisorbed 3-mercaptopropionic acid monolayer displaying circular pores of very well defined and tunable size, over which bilayers composed of N,N,-dimethyl-N,N,-dioctadecylammonium bromide or 1,2-dioleoyl-3-trimethylammonium-propane chloride were spread. Centrally indenting these "nanodrums" with an atomic force microscope tip yields force-indentation curves, which we quantitatively analyze by solving the corresponding shape equations of continuum curvature elasticity. Since the measured response depends in a known way on the system geometry (pore size, tip radius) and on material parameters (bending modulus, lateral tension), this opens the possibility to monitor local elastic properties of lipid membranes in a well-controlled setting.
Abstract. The production of the Λ and Σ 0 hyperons has been measured via the pp → pK + Λ/Σ 0 reaction at the internal COSY-11 facility in the excess energy range between 14 and 60 MeV. The transition of the Λ/Σ 0 cross section ratio from about 28 at Q ≤ 13 M eV to the high energy level of about 2.5 is covered by the data showing a strong decrease of the ratio between 10 and 20 MeV excess energy. Effects from the final state interactions in the p − Σ 0 channel seems to be much smaller compared to the p − Λ one. Estimates of the effective range parameters are given for the N Λ and the N Σ systems.
The mechanics of cellular membranes are governed by a non-equilibrium composite framework consisting of the semiflexible filamentous cytoskeleton and extracellular matrix proteins linked to the lipid bilayer. While elasticity information of plasma membranes has mainly been obtained from whole cell analysis, techniques that allow addressing local mechanical properties of cell membranes are desirable to learn how their lipid and protein composition is reflected in the elastic behavior on local length scales. Introduced here is an approach based on basolateral membranes of polar epithelial Madin-Darby canine kidney (MDCK) II cells, prepared on a highly ordered porous substrate that allows elastic mapping on a submicrometer-length scale. A strong correlation between the density of actin filaments and the measured membrane elasticity is found. Spatially resolved indentation experiments carried out with atomic force and fluorescence microscope permit relation of the supramolecular structure to the elasticity of cellular membranes. It is shown that the elastic response of the pore spanning cell membranes is governed by local bending modules rather than lateral tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.