This letter presents a current-controlled variable magnetizing inductance of transformer for further improving the holdup time on half-bridge LLC converter. When the input voltage is failed, the magnetizing inductance of transformer can be decreased sharply; therefore, the LLC converter holdup time can be improved without adding additional auxiliary circuit. The mathematic model between magnetizing inductance and step-gap structure of transformer is proposed, and the benefit effects using this step-gap structure of transformer have been verified in this letter. Finally, a 180-W, LLC converter utilizing step-gap structure of transformer has been achieved, and detailed analysis and design of the proposed step-gap structure are described.
This paper proposes a novel multi-element resonant converter with self-driven synchronous rectification (SR). The proposed resonant converter can achieve a zero-voltage-switching (ZVS) operation from light load to full load, meanwhile, the zero-current-switching (ZCS) can achieve rectifiers of a secondary-side. Therefore, the switching losses can be significantly reduced. Compared with an LLC resonant converter, the proposed resonant converter can be effective to decrease the circulating energy through the primary-side of the transformer to output a load and provide a wide voltage gain range for over-current protection as well as decreasing the inrush current under the start-up condition. Moreover, the proposed converter uses a simple current detection scheme to control the synchronous rectification switches. A detailed analysis and design of this novel multi-element resonant converter with self-driven synchronous rectification is described. Finally, a DC input voltage of 380-VDC and an output voltage/current of 12-VDC/54-A for the resonant converter prototype is built to verify the theoretical analysis and performance of the proposed converter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.