Purpose A multidisciplinary expert panel convened to formulate state-of-the-art recommendations for optimisation of selective internal radiation therapy (SIRT) with yttrium-90 (90Y)-resin microspheres. Methods A steering committee of 23 international experts representing all participating specialties formulated recommendations for SIRT with 90Y-resin microspheres activity prescription and post-treatment dosimetry, based on literature searches and the responses to a 61-question survey that was completed by 43 leading experts (including the steering committee members). The survey was validated by the steering committee and completed anonymously. In a face-to-face meeting, the results of the survey were presented and discussed. Recommendations were derived and level of agreement defined (strong agreement ≥ 80%, moderate agreement 50%–79%, no agreement ≤ 49%). Results Forty-seven recommendations were established, including guidance such as a multidisciplinary team should define treatment strategy and therapeutic intent (strong agreement); 3D imaging with CT and an angiography with cone-beam-CT, if available, and 99mTc-MAA SPECT/CT are recommended for extrahepatic/intrahepatic deposition assessment, treatment field definition and calculation of the 90Y-resin microspheres activity needed (moderate/strong agreement). A personalised approach, using dosimetry (partition model and/or voxel-based) is recommended for activity prescription, when either whole liver or selective, non-ablative or ablative SIRT is planned (strong agreement). A mean absorbed dose to non-tumoural liver of 40 Gy or less is considered safe (strong agreement). A minimum mean target-absorbed dose to tumour of 100–120 Gy is recommended for hepatocellular carcinoma, liver metastatic colorectal cancer and cholangiocarcinoma (moderate/strong agreement). Post-SIRT imaging for treatment verification with 90Y-PET/CT is recommended (strong agreement). Post-SIRT dosimetry is also recommended (strong agreement). Conclusion Practitioners are encouraged to work towards adoption of these recommendations.
Primary liver tumours (i.e. hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICC)) are among the most frequent cancers worldwide. However, only 10–20% of patients are amenable to curative treatment, such as resection or transplant. Liver metastases are most frequently caused by colorectal cancer, which accounts for the second most cancer-related deaths in Europe. In both primary and secondary tumours, radioembolization has been shown to be a safe and effective treatment option. The vast potential of personalized dosimetry has also been shown, resulting in markedly increased response rates and overall survival. In a rapidly evolving therapeutic landscape, the role of radioembolization will be subject to changes. Therefore, the decision for radioembolization should be taken by a multidisciplinary tumour board in accordance with the current clinical guidelines. The purpose of this procedure guideline is to assist the nuclear medicine physician in treating and managing patients undergoing radioembolization treatment. Preamble The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide among individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. These guidelines are intended to assist practitioners in providing appropriate nuclear medicine care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals taking into account the unique circumstances of each case. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set out in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine involves not only the science but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognised that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
90 Y-microsphere selective internal radiation therapy (SIRT) is a valuable treatment in unresectable hepatocellular carcinoma (HCC). Partition-model predictive dosimetry relies on differential tumor-to-nontumor perfusion evaluated on pretreatment 99m Tcmacroaggregated albumin (MAA) SPECT/CT. The aim of this study was to evaluate agreement between the predictive dosimetry of in tumor volumes (TVs) and nontumor volumes (NTVs) for glass and resin spheres. The Lin concordance (r c ) was used to measure accuracy (C b ) and precision (r). Results: Administered activity ranged from 0.8 to 1.9 GBq for glass spheres and from 0.6 to 3.4 GBq for resin spheres, and the respective TVs ranged from 2 to 125 mL and from 6 to 1,828 mL. The mean dose D In selective internal radiation therapy (SIRT), 90 Y-microsphere radioembolization is a valuable therapeutic option in patients presenting with unresectable hepatocellular carcinoma (HCC) not eligible for other therapeutic options (1-3).SIRT with 90 Y-charged microspheres relies on differential vascularization between tumor and nontumor liver parenchyma, resulting in favorable, potentially tumoricidal, deposition of microsphere activity in tumors while minimizing absorbed dose to the functional parenchyma, thus preventing toxicity. Two microsphere types are clinically available: resin spheres (SIR spheres; SirTex Medical Ltd.) and glass spheres (TheraSphere; Nordion Inc.). Despite being of similar size (;30 mm), these two types of sphere differ in specific activity, density (ffi 4 · 10 5 glass spheres/GBq; ffi 2 · 10 7 resin spheres/GBq), and injection solution (NaCl for glass spheres; water for resin spheres), leading to potential differences in embolic effect and local variations in the radiation dose deposited in tissues.Predictive dosimetry has included hepatic CT angiography for catheter positioning and partition modeling based on 99m Tcmacroaggregate albumin (MAA) SPECT/CT acquisition (4,5).The manufacturer-recommended activity for resin spheres is based on a semiempiric formula including body surface area (6,7) and tumor burden. This approach can be refined using a 3-compartment partition model (4) including the lungs, liver TVs, and liver NTVs derived from a pretreatment 99m Tc-MAA SPECT/CT scan. The prescribed glass sphere activity is based on a 2-compartment model (lungs and targeted liver regions) aiming to deliver a dose of 80-150 Gy to the targeted liver volume.90 Y time-of-flight (TOF) PET/CT dosimetry (8) provides a valuable tool to verify 99m Tc-MAA SPECT/CT-based predictive dosimetry.
The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.
Aim. Similar to PET, absolute quantitative imaging is becoming available in commercial SPECT/CT devices. This study's goal was to assess quantitative accuracy of activity recovery as a function of image reconstruction parameters and count statistics in a variety of phantoms. Materials and Methods. We performed quantitative 99mTc-SPECT/CT acquisitions (Siemens Symbia Intevo, Erlangen, Germany) of a uniform cylindrical, NEMA/IEC, and an anthropomorphic abdominal phantom. Background activity concentrations tested ranged: 2–80 kBq/mL. SPECT acquisitions used 120 projections (20 s/projection). Reconstructions were performed with the proprietary iterative conjugate gradient algorithm. NEMA phantom reconstructions were obtained as a function of the iteration number (range: 4–48). Recovery coefficients, hot contrast, relative lung error (NEMA phantom), and image noise were assessed. Results. In all cases, absolute activity and activity concentration were measured within 10% of the expected value. Recovery coefficients and hot contrast in hot inserts did not vary appreciably with count statistics. RC converged at 16 iterations for insert size > 22 mm. Relative lung errors were comparable to PET levels indicating the efficient integration of attenuation and scatter corrections with adequate detector modeling. Conclusions. The tested device provided accurate activity recovery within 10% of correct values; these performances are comparable to current generation PET/CT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.