Thrombocytopenia 2 (THC2) is an inherited disorder caused by monoallelic single nucleotide substitutions in the 5’UTR of the ANKRD26 gene. Patients have thrombocytopenia and increased risk of myeloid malignancies, in particular, acute myeloid leukemia (AML). Given the association of variants in the ANKRD26 5’UTR with myeloid neoplasms, we investigated whether, and to what extent, mutations in this region contribute to apparently sporadic AML. To this end, we studied 250 consecutive, non-familial, adult AML patients and screened the first exon of ANKRD26 including the 5’UTR. We found variants in four patients. One patient had the c.−125T>G substitution in the 5’UTR, while three patients carried two different variants in the 5’ end of the ANKRD26 coding region (c.3G>A or c.105C>G). Review of medical history showed that the patient carrying the c.−125T>G was actually affected by typical but unrecognized THC2, highlighting that some apparently sporadic AML cases represent the evolution of a well-characterized familial predisposition disorder. As regards the c.3G>A and the c.105C>G, we found that both variants result in the synthesis of N-terminal truncated ANKRD26 isoforms, which are stable and functional in cells, in particular, have a strong ability to activate the MAPK/ERK signaling pathway. Moreover, investigation of one patient with the c.3G>A showed that mutation was associated with strong ANKRD26 overexpression in vivo, which is the proposed mechanism for predisposition to AML in THC2 patients. These data provide evidence that N-terminal ANKRD26 truncating mutations play a potential pathogenetic role in AML. Recognition of AML patients with germline ANKRD26 pathogenetic variants is mandatory for selection of donors for bone marrow transplantation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-016-0382-y) contains supplementary material, which is available to authorized users.
Chromophobe renal cell carcinoma (chRCC) is a renal tumor subtype with a good prognosis, characterized by multiple chromosomal copy number variations (CNV). The World Health Organization (WHO) chRCC classification guidelines define a classic and an eosinophilic variant. Large cells with reticular cytoplasm and prominent cell membranes (pale cells) are characteristic for classic chRCC. Classic and eosinophilic variants were defined in 42 Swiss chRCCs, 119 Japanese chRCCs and in whole-slide digital images of 66 chRCCs from the Cancer Genome Atlas (TCGA) kidney chromophobe (KICH) dataset. 32 of 42 (76.2%) Swiss chRCCs, 90 of 119 (75.6%) Japanese chRCCs and 53 of 66 (80.3%) TCGA-KICH were classic chRCCs. There was no survival difference between eosinophilic and classic chRCC in all three cohorts. To identify a genotype/phenotype correlation, we performed a genome-wide CNV analysis using Affymetrix OncoScan® CNV Assay (Affymetrix/Thermo Fisher Scientific, Waltham, MA, USA) in 33 Swiss chRCCs. TCGA-KICH subtypes were compared with TCGA CNV data. In the combined Swiss and TCGA-KICH cohorts, losses of chromosome 1, 2, 6, 10, 13, and 17 were significantly more frequent in classic chRCC (p < 0.05, each), suggesting that classic chRCC are characterized by higher chromosomal instability. This molecular difference justifies the definition of two chRCC variants. Absence of pale cells could be used as main histological criterion to define the eosinophilic variant of chRCC.
Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS (CYCLOPS) genes have been recently identified as the most enriched class of copy-number associated gene dependencies in human cancer. These genes are cell essential and render tumor cells highly sensitive to the expression of the remaining copy. Chromophobe renal cell carcinoma (chRCC) is characterized by frequent chromosomal deletions, but the relevance of CYCLOPS genes in this tumor subtype is unclear. We found 39 (31%) of 124 recently published candidate CYCLOPS genes (B. Paolella et al., eLife 2017;6:e23268) located on 7 autosomes that are frequently lost in chRCC. GISTIC and RNA-seq data obtained from the TCGA-KICH database showed that 62% of these CYCLOPS genes had significantly lower expression levels in samples with deletion of the respective gene. As copy number (CN) loss of the CYCLOPS gene SF3B1 (Splicing factor 3B subunit 1) has been recently reported in 71% chRCC, we explored the relevance of SF3B1 CN alteration and SF3B1 expression in a set of chRCC and additional oncocytic renal neoplasms. The frequency of SF3B1 CN loss (65%) was similar to that obtained from the TCGA-KICH database and correlated significantly with both lower SF3B1 mRNA ( P < .05) and protein expression ( P < .001). Other tumor subtypes with oncocytic cytoplasm had normal SF3B1 CN and displayed strong SF3B1 protein expression. These results suggest that CN loss of CYCLOPS genes is a characteristic feature in chRCC. Since many CYCLOPS genes code for components of proteasomes and transcriptional regulation, their alteration could make chRCC vulnerable to targeted drugs.
Background: Ankrd2 is a stress responsive protein mainly expressed in muscle cells. Upon the application of oxidative stress, Ankrd2 translocates into the nucleus where it regulates the activity of genes involved in cellular response to stress. Emery-Dreifuss Muscular Dystrophy 2 (EDMD2) is a muscular disorder caused by mutations of the gene encoding lamin A, LMNA. As well as many phenotypic abnormalities, EDMD2 muscle cells also feature a permanent basal stress state, the underlying molecular mechanisms of which are currently unclear. Methods: Experiments were performed in EDMD2-lamin A overexpressing cell lines and EDMD2-affected human myotubes. Oxidative stress was produced by H2O2 treatment. Co-immunoprecipitation, cellular subfractionation and immunofluorescence analysis were used to validate the relation between Ankrd2 and forms of lamin A; cellular sensibility to stress was monitored by the analysis of Reactive Oxygen Species (ROS) release and cell viability. Results: Our data demonstrate that oxidative stress induces the formation of a complex between Ankrd2 and lamin A. However, EDMD2-lamin A mutants were able to bind and mislocalize Ankrd2 in the nucleus even under basal conditions. Nonetheless, cells co-expressing Ankrd2 and EDMD2-lamin A mutants were more sensitive to oxidative stress than the Ankrd2-wild type lamin A counterpart. Conclusions: For the first time, we present evidence that in muscle fibers from patients affected by EDMD2, Ankrd2 has an unusual nuclear localization. By introducing a plausible mechanism ruling this accumulation, our data hint at a novel function of Ankrd2 in the pathogenesis of EDMD2-affected cells.
Chromophobe renal cell carcinoma (chRCC) patients have good prognosis. Only 5%–10% patients die of metastatic disease after tumorectomy, but tumor progression cannot be predicted by histopathological parameters alone. chRCC are characterized by losses of many chromosomes, whereas gene mutations are rare. In this study, we aim at identifying genes indicating chRCC progression. A bioinformatic approach was used to correlate chromosomal loss and mRNA expression from 15287 genes from The Cancer Genome Atlas (TCGA) database. All genes in TCGA chromophobe renal cancer dataset (KICH) for which a significant correlation between chromosomal loss and mRNA expression was shown, were identified and their associations with outcome was assessed. Genome-wide DNA copy-number alterations were analyzed by Affymetrix OncoScan® CNV FFPE Microarrays in a second cohort of Swiss chRCC. In both cohorts, tumors with loss of chromosomes 2, 6, 10, 13, 17 and 21 had signs of tumor progression. There were 4654 genes located on these chromosomes, and 13 of these genes had reduced mRNA levels, which was associated with poor outcome in chRCC. Decreased CDKN1A expression at mRNA (p = 0.02) and protein levels (p = 0.02) were associated with short overall survival and were independent predictors of prognosis (p < 0.01 and <0.05 respectively). CDKN1A expression status is a prognostic biomarker independent of tumor stage. CDKN1A immunohistochemistry may be used to identify chRCC patients at greater risk of disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.