This paper presents a brief survey of studies conducted at the Laboratory of Applied and Environmental Microbiology of the University of Tuscia on the possible biotechnological valorisation of olive mill wastewater (OMW) using fungi. Besides being a serious environmental problem, OMW might be a possible resource owing to the presence of added value products (e.g. antioxidants) and of simple and complex sugars as a basis for fermentation processes. To this end the technical feasibility of various fungal fermentative processes either to obtain products of high added value or to improve its agronomic use has been assessed. With regard to the former aspect the following cases of study are described: production of enzymes, such as lipase by Candida cylindracea NRRL Y-17506, laccase and Mn-dependent peroxidase by Panus tigrinus CBS 577.79 and pectinases by Cryptococcus albidus var. albidus IMAT 4735, and exopolysaccharide production by Botryosphaeria rhodina DABAC-P82. As far as agronomic use of the waste is concerned, a process based on the acidogenic fungus Aspergillus niger NB2 and aimed at increasing the phosphorus content of OMW is also reported.
The COVID-19 occurrence is causing a global request for effective measures aimed at mitigating the infection spread. Facemasks have been identified as an essential device for people to protect themselves as well as the others from aerosol containing virus. Facemasks provide a critical barrier, reducing the number of infectious viruses or bacteria in exhaled breath. The present review describes the most relevant literature studies on materials and processing technologies used for facemask development and testing. Antibacterial and antiviral treatments are considered. Testing methods for measuring the actual performance are explained in detail. Strategies related to end use are analyzed in terms of reuse, the sanitization process, and recycling. This work derives from a synergic, multidisciplinary, and interdepartmental collaboration in the workgroup of Tuscia University, founded in response to the COVID-19 pandemic, aimed at providing scientific support and information on facemask materials.
Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs.
Botryosphaeria rhodina produced beta-glucan when grown on undiluted olive-mill wastewaters (OMW). The production of exopolysaccharide increased with the COD up to 17.2 g l(-1) on the most loaded OMW (151 and 66 g l(-1) of COD and total sugar, respectively). The total phenol content of OMW was reduced from 8 to 4.1 g l(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.