In this review, possibilities to modify intentionally the electronic transport properties of metal/molecule/metal devices (MMM devices) are discussed. Here especially the influence of the metal work function, the metal-molecule interface, the molecule dipole and different tunneling mechanisms are considered. A route to evaluate the effective surface work function of metal-molecule systems is given and, based on experimental results, an exemplary estimation is performed. The electron transport across different metal-molecule interfaces is characterized by relating transmission coefficients extracted from experimentally derived molecular conductances, decay constants or tunneling barrier heights. Based on the reported results the tunneling decay constant can be assumed to be suitable to characterize intrinsic molecular electron transport properties, while the nature of the metal-molecule contacts is properly described by the transmission coefficient. A clear gradation of transmission efficiencies of metal-anchoring group combinations can be given.
Thin films of 1,3-diethylbenzimidazol-2-ylidene (BIEt) were fabricated from THF solution on solid gold substrates and characterised by high-resolution X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. The surface-analytical data are in accord with the formation of self-assembled monolayers of BIEt molecules exhibiting an approximately vertical orientation on the substrate. The crystal structure of (BIEt)2 was also determined.
A self-assembled monolayer of dodecanethiol is grown onto (111) oriented gold by vacuum phase deposition and studied by ultrahigh vacuum scanning tunneling microscopy (STM). The films consist of domains that exhibit the c(4 x 2) over-structure of the hexagonal (square root of 3 x square root of 3)R30 of alkanethiols on gold. The domain size is only limited by the terrace size of the underlying gold. By higher resolution scans a new phase of the c(4 x 2) structure consisting of four inequivalent molecules that display different heights in the STM images is discovered.
Forming reliable and reproducible molecule−nanoelectrode contacts is one of the key issues for the implementation of nanoparticles as functional units into nanoscale devices. Utilizing heterometallic electrodes and Janus-type nanoparticles equipped with molecules allowing selective binding to a distinct electrode material represents a promising approach to achieve this goal. Here, the directed immobilization of individual Janus-type gold nanoparticles (AuNP) between heterometallic electrodes leading to the formation of asymmetric contacts in a highly controllable way is presented. The Janus-AuNP are stabilized by two types of ligands with different terminal groups on opposite hemispheres. The heterometallic nanoelectrode gaps are formed by electron beam lithography in combination with a self-alignment procedure and are adjusted to the size of the Janus-AuNP. Thus, by choosing adequate molecular end group/metal combinations, the immobilization direction of the Janus-AuNP is highly controllable. These results demonstrate the striking potential of this approach for the building-up of novel nanoscale organic/inorganic hybrid architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.