BackgroundSeveral factors, including environmental and climatic factors, influence the transmission of vector-borne diseases. Nevertheless, the identification and relative importance of climatic factors for vector-borne diseases remain controversial. Dengue is the world's most important viral vector-borne disease, and the controversy about climatic effects also applies in this case. Here we address the role of climate variability in shaping the interannual pattern of dengue epidemics.Methods and FindingsWe have analysed monthly data for Thailand from 1983 to 1997 using wavelet approaches that can describe nonstationary phenomena and that also allow the quantification of nonstationary associations between time series. We report a strong association between monthly dengue incidence in Thailand and the dynamics of El Niño for the 2–3-y periodic mode. This association is nonstationary, seen only from 1986 to 1992, and appears to have a major influence on the synchrony of dengue epidemics in Thailand.ConclusionThe underlying mechanism for the synchronisation of dengue epidemics may resemble that of a pacemaker, in which intrinsic disease dynamics interact with climate variations driven by El Niño to propagate travelling waves of infection. When association with El Niño is strong in the 2–3-y periodic mode, one observes high synchrony of dengue epidemics over Thailand. When this association is absent, the seasonal dynamics become dominant and the synchrony initiated in Bangkok collapses.
In the current context of global infectious disease risks, a better understanding of the dynamics of major epidemics is urgently needed. Time-series analysis has appeared as an interesting approach to explore the dynamics of numerous diseases. Classical time-series methods can only be used for stationary time-series (in which the statistical properties do not vary with time). However, epidemiological time-series are typically noisy, complex and strongly non-stationary. Given this specific nature, wavelet analysis appears particularly attractive because it is well suited to the analysis of non-stationary signals. Here, we review the basic properties of the wavelet approach as an appropriate and elegant method for time-series analysis in epidemiological studies. The wavelet decomposition offers several advantages that are discussed in this paper based on epidemiological examples. In particular, the wavelet approach permits analysis of transient relationships between two signals and is especially suitable for gradual change in force by exogenous variables.
Freshwater resources are a high-priority issue in the Pacific region. Water shortage is a serious problem in many small island states, and many depend heavily on rainwater as the source of their water. Lack of safe water supplies is an important factor in diarrheal illness. There have been no previous studies looking specifically at the relationship between climate variability and diarrhea in the Pacific region. We carried out two related studies to explore the potential relationship between climate variability and the incidence of diarrhea in the Pacific Islands. In the first study, we examined the average annual rates of diarrhea in adults, as well as temperature and water availability from 1986 to 1994 for 18 Pacific Island countries. There was a positive association between annual average temperature and the rate of diarrhea reports, and a negative association between water availability and diarrhea rates. In the second study, we examined diarrhea notifications in Fiji in relation to estimates of temperature and rainfall, using Poisson regression analysis of monthly data for 1978-1998. There were positive associations between diarrhea reports and temperature and between diarrhea reports and extremes of rainfall. These results are consistent with previous research and suggest that global climate change is likely to exacerbate diarrheal illness in many Pacific Island countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.