Current research on AAD always assumes the availability of the clean speech signals, which limits the applicability in real settings. We have extended this research to detect the attended speaker even when only microphone recordings with noisy speech mixtures are available. This is an enabling ingredient for new brain-computer interfaces and effective filtering schemes in neuro-steered hearing prostheses. Here, we provide a first proof of concept for EEG-informed attended speaker extraction and denoising.
Abstract-Simultaneous recording of electroencephalographic (EEG) signals and functional magnetic resonance images (fMRI) has gained wide interest in brain research, thanks to the highly complementary spatiotemporal nature of both modalities. We propose a novel technique to extract sources of neural activity from the multimodal measurements, which relies on a structured form of coupled matrix-tensor factorization (CMTF). In a datasymmetric fashion, we characterize these underlying sources in the spatial, temporal and spectral domain, and estimate how the observations in EEG and fMRI are related through neurovascular coupling. That is, we explicitly account for the intrinsically variable nature of this coupling, allowing more accurate localization of the neural activity in time and space. We illustrate the effectiveness of this approach, which is shown to be robust to noise, by means of a simulation study. Hence, this provides a conceptually simple, yet effective alternative to other data-driven analysis methods in event-related or restingstate EEG-fMRI studies.
Abstract-Hearing prostheses have built-in algorithms to perform acoustic noise reduction and improve speech intelligibility. However, in a multi-speaker scenario the noise reduction algorithm has to determine which speaker the listener is focusing on, in order to enhance it while suppressing the other interfering sources. Recently, it has been demonstrated that it is possible to detect auditory attention using electroencephalography (EEG). In this paper, we use multi-channel Wiener filters (MWFs), to filter out each speech stream from the speech mixtures in the microphones of a binaural hearing aid, while also reducing background noise. From the demixed and denoised speech streams, we extract envelopes for an EEG-based auditory attention detection (AAD) algorithm. The AAD module can then select the output of the MWF corresponding to the attended speaker. We evaluate our algorithm in a two-speaker scenario in the presence of babble noise and compare it to a previously proposed algorithm. Our algorithm is observed to provide speech envelopes that yield better AAD accuracies, and is more robust to variations in speaker positions and diffuse background noise.
We propose and evaluate a method to estimate a respiratory signal from ungated cardiac magnetic resonance (CMR) images. Ungated CMR images were acquired in 5 subjects who performed exercise at different intensity levels under different physiological conditions while breathing freely. The respiratory motion was estimated by applying principal components analysis (PCA). A sign correction procedure was developed to correctly define inspiration and expiration, based on either tracking of the diaphragmatic motion or estimation of the lung volume or a combination of both. Evaluation was done using a plethysmograph signal as reference. There was a good correspondence between the plethysmograph and the estimated respiratory signals. Respiratory motion was effectively captured by one of the PCA components in 88% of the cases. Moreover, the proposed method successfully estimated the respiratory phase in 91% of the evaluated slices. The pipeline is robust, admitting a slight decline in performance with increased exercise intensity. Respiratory motion was accurately estimated by means of PCA and the application of a sign correction procedure. Our method showed promising results even for acquisitions during exercise where excessive body motion occurs. The proposed method provides a way to extract the respiratory signal from ungated CMR images, at rest as well as during exercise, in a fully unsupervised fashion, which may reduce the clinician's workload drastically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.