Our purpose is to evaluate the performance of magnetic resonance (MR) radiomics analysis for differentiating between malignant and benign parotid neoplasms and, among the latter, between pleomorphic adenomas and Warthin tumors. We retrospectively evaluated 75 T2-weighted images of parotid gland lesions, of which 61 were benign tumors (32 pleomorphic adenomas, 23 Warthin tumors and 6 oncocytomas) and 14 were malignant tumors. A receiver operating characteristics (ROC) curve analysis was performed to find the threshold values for the most discriminative features and determine their sensitivity, specificity and area under the ROC curve (AUROC). The most discriminative features were used to train a support vector machine classifier. The best classification performance was obtained by comparing a pleomorphic adenoma with a Warthin tumor (yielding sensitivity, specificity and a diagnostic accuracy as high as 0.8695, 0.9062 and 0.8909, respectively) and a pleomorphic adenoma with malignant tumors (sensitivity, specificity and a diagnostic accuracy of 0.6666, 0.8709 and 0.8043, respectively). Radiomics analysis of parotid tumors on conventional T2-weighted MR images allows the discrimination of pleomorphic adenomas from Warthin tumors and malignant tumors with a high sensitivity, specificity and diagnostic accuracy.
This paper offers a brief overview of common non-invasive techniques for body composition assessment methods, and of the way images extracted by these methods can be processed with artificial intelligence (AI) and radiomic analysis. These new techniques are becoming more and more appealing in the field of health care, thanks to their ability to treat and process a huge amount of data, suggest new correlations between extracted imaging biomarkers and traits of several diseases as well as lead to the possibility to realise an increasingly personalized medicine. The idea is to suggest the use of AI applications and radiomic analysis to search for features that may be extracted from medical images [computed tomography (CT) and magnetic resonance imaging (MRI)], and that may turn out to be good predictors of metabolic disorder diseases and cancer. This could lead to patient-specific treatments and management of several diseases linked with excessive body fat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.