Increased rates of indeterminate QuantiFERON-TB Gold Plus Assay (QFT-Plus) were demonstrated in patients hospitalized with Coronavirus Disease (COVID)-19. We aimed to define the prevalence and characteristics of hospitalized COVID-19 patients with indeterminate QFT-Plus. A retrospective study was performed including hospitalized COVID-19 patients, stratified in survivors and non-survivors, non-severe and severe according to the maximal oxygen supply required. Statistical analysis was performed using JASP ver0.14.1 and GraphPad Prism ver8.2.1. A total of 420 patients were included, median age: 65 years, males: 66.4%. The QFT-Plus was indeterminate in 22.1% of patients. Increased rate of indeterminate QFT-Plus was found in non-survivors (p = 0.013) and in severe COVID-19 patients (p < 0.001). Considering the Mitogen-Nil condition of the QFT-Plus, an impaired production of interferon-gamma (IFN-γ) was found in non-survivors (p < 0.001) and in severe COVID-19 patients (p < 0.001). A positive correlation between IFN-γ levels in the Mitogen-Nil condition and the absolute counts of CD3+ (p < 0.001), CD4+ (p < 0.001), and CD8+ (p < 0.001) T-lymphocytes was found. At the multivariable analysis, CD3+ T-cell absolute counts and CD4/CD8 ratio were confirmed as independent predictors of indeterminate results at the QFT-Plus. Our study confirmed the increased rate of indeterminate QFT-Plus in COVID-19 patients, mainly depending on the peripheral blood T-lymphocyte depletion found in the most severe cases.
Lymphopenia has been consistently reported as associated with severe coronavirus disease 2019 (COVID-19). Several studies have described a profound decline in all T-cell subtypes in hospitalized patients with severe and critical COVID-19. The aim of this study was to assess the role of T-lymphocyte subset absolute counts measured at ward admission in predicting 30-day mortality in COVID-19 hospitalized patients, validating a new prognostic score, the T-Lymphocyte Subset Index (TLSI, range 0–2), based on the number of T-cell subset (CD4+ and CD8+) absolute counts that are below prespecified cutoffs. These cutoff values derive from a previously published work of our research group at Policlinico Tor Vergata, Rome, Italy: CD3+CD4+ < 369 cells/μL, CD3+CD8+ < 194 cells/μL. In the present single-center retrospective study, T-cell subsets were assessed on admission to the infectious diseases ward. Statistical analysis was performed using JASP (Version 0.16.2. JASP Team, 2022, Amsterdam, The Netherlands) and Prism8 (version 8.2.1. GraphPad Software, San Diego, CA, USA). Clinical and laboratory parameters of 296 adult patients hospitalized because of COVID-19 were analyzed. The overall mortality rate was 22.3% (66/296). Survivors (S) had a statistically significant lower TLSI score compared to non-survivors (NS) (p < 0.001). Patients with increasing TLSI scores had proportionally higher rates of 30-day mortality (p < 0.0001). In the multivariable logistic analysis, the TLSI was an independent predictor of in-hospital 30-day mortality (OR: 1.893, p = 0.003). Survival analysis showed that patients with a TLSI > 0 had an increased risk of death compared to patients with a TLSI = 0 (hazard ratio: 2.83, p < 0.0001). The TLSI was confirmed as an early and independent predictor of COVID-19 in-hospital 30-day mortality.
In this study, we provided a retrospective overview in order to better define SARS-CoV-2 variants circulating in Italy during the first two years of the pandemic, by characterizing the spike mutational profiles and their association with viral load (expressed as ct values), N-glycosylation pattern, hospitalization and vaccination. Next-generation sequencing (NGS) data were obtained from 607 individuals (among them, 298 vaccinated and/or 199 hospitalized). Different rates of hospitalization were observed over time and among variants of concern (VOCs), both in the overall population and in vaccinated individuals (Alpha: 40.7% and 31.3%, Beta: 0%, Gamma: 36.5% and 44.4%, Delta: 37.8% and 40.2% and Omicron: 11.2% and 7.1%, respectively, both p-values < 0.001). Approximately 32% of VOC-infected individuals showed at least one atypical major spike mutation (intra-prevalence > 90%), with a distribution differing among the strains (22.9% in Alpha, 14.3% in Beta, 41.8% in Gamma, 46.5% in Delta and 15.4% in Omicron, p-value < 0.001). Overall, significantly less atypical variability was observed in vaccinated individuals than unvaccinated individuals; nevertheless, vaccinated people who needed hospitalization showed an increase in atypical variability compared to vaccinated people that did not need hospitalization. Only 5/607 samples showed a different putative N-glycosylation pattern, four within the Delta VOC and one within the Omicron BA.2.52 sublineage. Interestingly, atypical minor mutations (intra-prevalence < 20%) were associated with higher Ct values and a longer duration of infection. Our study reports updated information on the temporal circulation of SARS-CoV-2 variants circulating in Central Italy and their association with hospitalization and vaccination. The results underline how SARS-CoV-2 has changed over time and how the vaccination strategy has contributed to reducing severity and hospitalization for this infection in Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.