Monitoring anthropogenic impacts is essential for managing and conserving ecosystems, yet current biomonitoring approaches lack the tools required to deal with the effects of stressors on species and their interactions in complex natural systems.Ecological networks (trophic or mutualistic) can offer new insights into ecosystem degradation, adding value to current taxonomically constrained schemes. We highlight some examples to show how new network approaches can be used to interpret ecological responses.Synthesis and applications. Augmenting routine biomonitoring data with interaction data derived from the literature, complemented with ground-truthed data from direct observations where feasible, allows us to begin to characterise large numbers of ecological networks across environmental gradients. This process can be accelerated by adopting emerging technologies and novel analytical approaches, enabling biomonitoring to move beyond simple pass/fail schemes and to address the many ecological responses that can only be understood from a network-based perspective.
We examined the influence of land-use, habitat, and water quality on the spatial distribution of aquatic macroinvertebrates in two human-dominated catchments in the Swiss Plateau (Gürbe, Mönchaltorfer Aa). Land-use in the Gürbe catchment was dominated by agriculture, whereas urban land-use was more common in the Mönchaltorfer Aa. Study sites in each catchment were characterized using measures of local habitat conditions, water quality parameters including water temperature, and organic matter resources. A strong longitudinal gradient in temperature, conductivity and nitrogen was evident among sites in the Gürbe catchment, although sites on a main tributary had a strong agricultural signature and deviated from this pattern. Percentage agricultural land-use in the Gürbe was strongly correlated with algal biomass and the water quality PCA axes associated with conductivity, nitrogen (axis-1) and temperature (axis-3). Spatial Keywords Urban stream Á Aquatic insects Á Physico-chemical Á Nutrients Á Micropollutants Electronic supplementary material The online version of this article (
Running waters are among the most threatened ecosystems globally, having altered hydrological regimes, homogenized habitat, and impaired water quality. These multiple stressors impact aquatic biodiversity and ecosystem function across space and time, although a clear mechanistic understanding is still lacking. Here, we examined the trophic response of macroinvertebrates among streams in a Swiss lowland catchment encompassing a gradient of land uses. Clear compositional changes were observed as anthropogenic impacts increased from least-impacted to agricultural and urbanized sites. Taxonomic diversity was lowest at sites with morphological and water quality impairment (agricultural sites), whereas taxonomic identity (susceptible vs. generalist species) mainly changed due to water quality degradation (agricultural and urban sites) based on the SPEAR (pesticides) index. Using stable isotopes (d 13 C, d 15 N), a simplification in macroinvertebrate trophic structure was evident along the land use gradient. At a site receiving wastewater treatment effluent, stable isotopes also revealed trophic shifts in primary consumers that corresponded to changes in available food resources. Results further showed that some taxa losses, e.g., the mayfly Ecdyonurus, to land-use effects may be due to low trophic plasticity. The combination of analyses, including stable isotopes, provided an improved mechanistic understanding of community and population responses to land-use changes along river networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.