During their lifespan, Red blood cells (RBC), due to their inability to self-replicate, undergo an ageing degradation phenomenon. This pathway, both in vitro and in vivo, consists of a series of chemical and morphological modifications, which include deviation from the biconcave cellular shape, oxidative stress, membrane peroxidation, lipid content decrease and uncoupling of the membrane-skeleton from the lipid bilayer. Here, we use the capabilities of atomic force microscopy based infrared nanospectroscopy (AFM-IR) to study and correlate, with nanoscale resolution, the morphological and chemical modifications that occur during the natural degradation of RBCs at the subcellular level. By using the tip of an AFM to detect the photothermal expansion of RBCs, it is possible to obtain nearly two orders of magnitude higher spatial resolution IR spectra, and absorbance images than can be obtained on diffraction-limited commercial Fourier-transform Infrared (FT-IR) microscopes. Using this approach, we demonstrate that we can identify localized sites of oxidative stress and membrane peroxidation on individual RBC, before the occurrence of neat morphological changes in the cellular shape.
The determination of the function of cells in zero-gravity conditions is a subject of interest in many different research fields. Due to their metabolic unicity, the characterization of the behaviour of erythrocytes maintained in prolonged microgravity conditions is of particular importance. Here, we used a 3D-clinostat to assess the microgravity-induced modifications of the structure and function of these cells, by investigating how they translate these peculiar mechanical stimuli into modifications, with potential clinical interest, of the biochemical pathways and the aging processes. We compared the erythrocyte’s structural parameters and selected metabolic indicators that are characteristic of the aging in microgravity and standard static incubation conditions. The results suggest that, at first, human erythrocytes react to external stimuli by adapting their metabolic patterns and the rate of consumption of the cell resources. On longer timeframes, the cells translate even small differences in the environment mechanical solicitations into structural and morphologic features, leading to distinctive morphological patterns of aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.