Scope: Curcumin revealed various health-beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex-differences.
Methods and results:In this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration-time curve (AUC), the micronized curcumin was 14-, 5-, and 9-fold and micellar curcumin 277-, 114-, and 185-fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations. Conclusion: Both, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation.
Comparative sensory analysis revealed that a 44-week-matured Gouda cheese (GC44) exhibited a much more pronounced mouthfulness and long-lasting taste complexity when compared to a young Gouda cheese ripened for only 4 weeks (GC4). To identify the molecules underlying that so-called kokumi sensation, a sensomics approach was applied on the water-soluble extract (WSE44) of GC44 by combining gel permeation chromatography (GPC) with analytical sensory tools. HPLC-MS/MS experiments on GPC fractions inducing a kokumi sensation when tasted in an aqueous biomimetic taste recombinant solution (rWSE44) enabled the identification of 8 alpha-L-glutamyl and 10 gamma-L-glutamyl dipeptides as candidate kokumi-enhancing molecules. Among those, only the gamma-L-glutamyl dipeptides were found to impart an enhanced kokumi sensation to the matured cheese, whereas none of the alpha-glutamyl peptides were found to be active. Among the gamma-L-glutamyl peptides, the candidates gamma-Glu-Glu, gamma-Glu-Gly, gamma-Glu-Gln, gamma-Glu-Met, gamma-Glu-Leu, and gamma-Glu-His, present in GC44 in concentrations between 4.11 and 17.66 micromol/kg, were identified for the first time as the key kokumi molecules enhancing mouthfulness and complex taste continuity of the matured cheese.
Application of a sensomics approach on the water-soluble extract of a matured Gouda cheese including gel permeation chromatography, ultrafiltration, solid phase extraction, preparative RP-HPLC, and HILIC combined with analytical sensory tools enabled the comprehensive mapping of bitter-tasting metabolites. LC-MS-TOF and LC-MS/MS, independent synthesis, and sensory analysis revealed the identification of a total of 16 bitter peptides formed by proteolysis of caseins. Eleven previously unreported bitter peptides were aligned to beta-casein, among which 6 peptides were released from the sequence beta-CN(57-69) of the N terminus of beta-casein and 2 peptides originated from the C-terminal sequence beta-CN(198-206). The other peptides were liberated from miscellaneous regions of beta-casein, namely, beta-CN(22-28), beta-CN(74-86), beta-CN(74-77), and beta-CN(135-138), respectively. Six peptides were found to originate from alpha(s1)-casein and were shown to have the sequences alpha(s1)-CN(11-14), alpha(s1)-CN(56-60), alpha(s1)-CN(70/71-74), alpha(s1)-CN(110/111-114), and alpha(s1)-CN(135-136). Sensory evaluation of the purified, synthesized peptides revealed that 12 of these peptides showed pronounced bitter taste with recognition thresholds between 0.05 and 6.0 mmol/L. Among these peptides, the decapeptide YPFPGPIHNS exhibited a caffeine-like bitter taste quality at the lowest threshold concentration of 0.05 mmol/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.