a b s t r a c tLand use practices alter the biomass and structure of soil microbial communities. However, the impact of land management intensity on soil microbial diversity (i.e. richness and evenness) and consequences for functioning is still poorly understood. Here, we addressed this question by coupling molecular characterization of microbial diversity with measurements of carbon (C) mineralization in soils obtained from three locations across Europe, each representing a gradient of land management intensity under different soil and environmental conditions. Bacterial and fungal diversity were characterized by high throughput sequencing of ribosomal genes. Carbon cycling activities (i.e., mineralization of autochthonous soil organic matter, mineralization of allochthonous plant residues) were measured by quantifying 12 C-and 13 C-CO 2 release after soils had been amended, or not, with 13 C-labelled wheat residues. Variation partitioning analysis was used to rank biological and physicochemical soil parameters according to their relative contribution to these activities. Across all three locations, microbial diversity was greatest at intermediate levels of land use intensity, indicating that optimal management of soil microbial diversity might not be achieved under the least intensive agriculture. Microbial richness was the best predictor of the C-cycling activities, with bacterial and fungal richness explaining 32.2 and 17% of the intensity of autochthonous soil organic matter mineralization; and fungal richness explaining 77% of the intensity of wheat residues mineralization. Altogether, our results provide evidence that there is scope for improvement in soil management to enhance microbial biodiversity and optimize C transformations mediated by microbial communities in soil.
Invasive alien plants are a major threat to biodiversity and they contribute to the unfavourable conservation status of habitats of interest to the European Community. In order to favour implementation of European Union Regulation no. 1143/2014 on invasive alien species, the Italian Society of Vegetation Science carried out a large survey led by a task force of 49 contributors with expertise in vegetation across all the Italian administrative regions. The survey summed up the knowledge on impact mechanisms of invasive alien plants in Italy and their outcomes on plant communities and the EU habitats of Community Interest, in accordance with Directive no. 92/ 43/EEC. The survey covered 241 alien plant species reported as having deleterious ecological impacts. The data collected illustrate the current state of the art, highlight the main gaps in knowledge, and suggest topics to be further investigated. In particular, the survey underlined competition as being the main mechanism of ecological impact on plant communities and Natura 2000 habitats. Of the 241 species, only Ailanthus altissima was found to exert an ecological impact on plant communities and Natura 2000 habitats in all Italian regions; while a further 20 species impact up to ten out of the 20 Italian administrative regions. Our data indicate that 84 out of 132 Natura 2000 Habitats (64%) are subjected to some degree of impact by invasive alien plants. Freshwater habitats and natural and semi-natural grassland formations were impacted by the highest number of alien species, followed by coastal sand dunes and inland dunes, and forests. Although not exhaustive, this research is the first example of nationwide evaluation of the ecological impacts of invasive alien plants on plant communities and Natura 2000 Habitats.
Identifying a soil core microbiome is crucial to appreciate the established microbial consortium, which is not usually subjected to change and, hence, possibly resistant/resilient to disturbances and a varying soil context. Fungi are a major part of soil biodiversity, yet the mechanisms driving their large-scale ecological ranges and distribution are poorly understood. The degree of fungal community overlap among 16 soil samples from distinct ecosystems and distant geographic localities (truffle grounds, a Mediterranean agro-silvo-pastoral system, serpentine substrates and a contaminated industrial area) was assessed by examining the distribution of fungal ITS1 and ITS2 sequences in a dataset of 454 libraries. ITS1 and ITS2 sequences were assigned to 1,660 and 1,393 Operational
74Taxonomic Units (OTUs; as defined by 97% sequence similarity), respectively. Fungal beta-diversity was found to be spatially autocorrelated. At the level of individual OTUs, eight ITS1 and seven ITS2 OTUs were found in all soil sample groups. These ubiquitous taxa comprised generalist fungi with oligotrophic and chitinolytic abilities, suggesting that a stable core of fungi across the complex soil fungal assemblages is either endowed with the capacity of sustained development in the nutrient-poor soil conditions or with the ability to exploit organic resources (such as chitin) universally distributed in soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.