IntroductionThe human salivary (AMY1) gene, encoding salivary α-amylase, has variable copy number variants (CNVs) in the human genome. We aimed to determine if real-time quantitative polymerase chain reaction (qPCR) and the more recently available Droplet Digital PCR (ddPCR) can provide a precise quantification of the AMY1 gene copy number in blood, buccal cells and saliva samples derived from the same individual.MethodsSeven participants were recruited and DNA was extracted from the blood, buccal cells and saliva samples provided by each participant. Taqman assay real-time qPCR and ddPCR were conducted to quantify AMY1 gene copy numbers. Statistical analysis was carried out to determine the difference in AMY1 gene copy number between the different biological specimens and different assay methods.ResultsWe found significant within-individual difference (p<0.01) in AMY1 gene copy number between different biological samples as determined by qPCR. However, there was no significant within-individual difference in AMY1 gene copy number between different biological samples as determined by ddPCR. We also found that AMY1 gene copy number of blood samples were comparable between qPCR and ddPCR, while there is a significant difference (p<0.01) between AMY1 gene copy numbers measured by qPCR and ddPCR for both buccal swab and saliva samples.ConclusionsDespite buccal cells and saliva samples being possible sources of DNA, it is pertinent that ddPCR or a single biological sample, preferably blood sample, be used for determining highly polymorphic gene copy numbers like AMY1, due to the large within-individual variability between different biological samples if real time qPCR is employed.
BackgroundVisfatin is an adipokine associated with glucose and lipid metabolism. We previously reported two visfatin upstream single nucleotide polymorphisms (SNPs), c.-3187G > A (rs11977021) and c.-1537C > T (rs61330082), which were in perfect linkage disequilibrium, in a Singaporean cohort of severely obese children and are associated with visfatin level and adverse cardiometabolic parameters. We aim to functionally characterize the effect of c.-3187G > A and c.-1537C > T SNPs on basal transcriptional activity.MethodsA 1.6 kb and 3.7 kb upstream promoter region of the visfatin gene was amplified by polymerase chain reaction and separately cloned into luciferase reporter vectors. Successful clones were transfected into human embryonic kidney (HEK293T) and human breast carcinoma (MCF7) cells and in-vitro dual-luciferase assay was performed. Electrophoretic mobility shift assay (EMSA) was also conducted to examine the binding affinity between transcription factors and visfatin promoter sequences.ResultsVariant promoter with only c.-1537C > T SNP did not show a change in transcriptional activity as compared to the wild type. However, variant promoter with both c.-3187G > A and c.-1537C > T SNPs showed a statistically significant increase of 1.41 fold (p < 0.01) in transcriptional activity. The longer 3.7kbp visfatin promoter sequence was also shown to have significantly higher transcriptional activity (p < 0.05) as compared to the shorter 1.6kbp visfatin promoter. Both c.-3187G > A and c.-1537C > T variants showed an increased binding with nuclear protein.Discussion and conclusionsWe have demonstrated for the first time that visfatin variant promoter with both c.-3187G > A and c.-1537C > T SNPs result in an increase in transcriptional activity. This supports our previous finding and postulation that these SNPs contribute to elevated visfatin levels which may mediate higher triglyceride levels, severe systolic blood pressure and severe hypertension in obese children. These SNPs may co-operatively affect enhancer or silencer function to regulate transcriptional activity. In conclusion, this study shows that upstream visfatin SNPs could potentially affect phenotypic outcome in obese children through alteration of circulating visfatin level.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3315-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.