Mesenchymal stromal cells (MSCs) are multipotent cells that can give rise to different cell types of the mesodermal lineages. They are powerful sources for cell therapy in regenerative medicine as they can be isolated from various tissues, and can be expanded and induced to differentiate into multiple lineages. Recently, the umbilical cord has been suggested as an alternative source of MSCs. Although MSCs derived from the umbilical cord can be induced to differentiate into osteoblasts with a phenotypic similarity to that of bone marrow-derived MSCs, the differentiation ability is not consistent. In addition, MSCs from the umbilical cord require a longer period of time to differentiate into osteoblasts. Previous studies have demonstrated the benefits of bone morphogenetic protein-2 (BMP-2) in bone tissue regeneration. In addition, several studies have supported the use of BMP-2 in periodontal regeneration, sinus lift bone-grafting and non-unions in oral surgery. Although the use of BMP-2 for bone tissue regeneration has been extensively investigated, the BMP-2-induced osteogenic differentiation of MSCs derived from the umbilical cord has not yet been fully examined. Therefore, in this study, we aimed to examine the effects of BMP-2 on the osteogenic differentiation of MSCs derived from umbilical cord compared to that of MSCs derived from bone marrow. The degree of osteogenic differentiation following BMP-2 treatment was determined by assessing alkaline phosphatase (ALP) activity, and the expression profiles of osteogenic differentiation marker genes, osterix (Osx), Runt-related transcription factor 2 (Runx2) and osteocalcin (Ocn). The results revealed that BMP-2 enhanced the osteogenic differentiation capacity of MSCs derived from both bone marrow and umbilical cord as demonstrated by increased ALP activity and the upregulation of osteogenic differentiation marker genes. The enhancement of the osteogenic differentiation capacity of MSCs by BMP-2 suggests that these MSCs may be used as alternative sources for bone engineering or cell therapy in regenerative medicine.
The results obtained from this study suggest that MSC from amnion, placenta, Wharton's jelly and umbilical cord can therefore be potentially used for substituting BM-MSC in several therapeutic applications, including the treatment of GvHD.
BackgroundEndothelial progenitor cells (EPCs) play an important role in vascular repair and a decrease in the number of EPCs is observed in type 2 diabetes. However, there is no report on the change of EPCs after glycemic control. This study therefore aimed to investigate the EPC number and function in patients with good and poor glycemic control.MethodsThe number of EPCs was studied using flow cytometry by co-expression of CD34 and VEGFR2. The EPCs were cultured and characterized by the expression of UEA-I, CD34, VEGFR2, vWF and Dil-Ac-LDL engulfment, as well as the ability to form capillary-like structures. An in vitro study on the effect of hyperglycemia on the proliferation and viability of the cultured EPCs was also performed.ResultsThe number of EPCs in type 2 diabetes was significantly decreased compared with healthy controls and there was an inverse correlation between the EPC numbers and plasma glucose, as well as HbA1C. The number and function of EPCs in patients with good glycemic control were recovered compared with those with poor glycemic control. When glucose was supplemented in the culture in vitro, there was a negative effect on the proliferation and viability of EPCs, in a dose-dependent manner, whereas the enhancement of apoptosis was observed.ConclusionThere was EPC dysfunction in type 2 diabetes which might be improved by strict glycemic control. However, the circulating EPC number and proliferative function in patients with good glycemic control did not reach the level in healthy controls.
Normal chromatin condensation is important for sperm fertilising ability. However, routine semen analysis does not identify defects in sperm chromatin structure. This study aimed to investigate the condensation of chromatin and DNA integrity in spermatozoa of infertile men and deduce the relationship with sperm quality, as measured by conventional semen parameters. Semen analysis was carried out to assess sperm quality according to World Health Organization criteria. The remaining aliquot of each sample was processed for transmission electron microscopy, chromomycin A3 (CMA3) and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays. The ultrastructural analysis of spermatozoa from infertile men showed heterogeneity in sperm nuclear morphology. Some spermatozoa displayed a round nucleus with incomplete chromatin condensation. Immunoreactivity with antitransitional protein and antiprotamine antibodies indicated nuclear maturation defects in the spermatozoa of infertile men. Spearman's correlation analysis indicated a positive correlation between the percentages of CMA3- and TUNEL-positive spermatozoa. In addition, these two parameters were negatively correlated with sperm concentration, motility and normal morphology. This study demonstrated that men with morphologically normal spermatozoa of <30% have greater degree of protamine deficiency and DNA damage than men with morphologically normal spermatozoa of >30%. Evaluation of chromatin integrity appears to be a useful tool for assessing male fertility.
Most type 2 diabetic patients are obese who have increased number of visceral adipocytes. Those visceral adipocytes release several factors that enhance insulin resistance making diabetic treatment ineffective. It is known that significant percentages of visceral adipocytes are derived from mesenchymal stem cells and high glucose enhances adipogenic differentiation of mouse bone marrow-derived MSCs (BM-MSCs). However, the effect of high glucose on adipogenic differentiation of human bone marrow and gestational tissue-derived MSCs is still poorly characterized. This study aims to investigate the effects of high glucose on proliferation as well as adipogenic and osteogenic differentiation of human MSCs derived from bone marrow and several gestational tissues including chorion, placenta, and umbilical cord. We found that high glucose reduced proliferation but enhanced adipogenic differentiation of all MSCs examined. The expression levels of some adipogenic genes were also upregulated when MSCs were cultured in high glucose. Although high glucose transiently downregulated the expression levels of some osteogenic genes examined, its effect on the osteogenic differentiation levels of the MSCs is not clearly demonstrated. The knowledge gained from this study will increase our understanding about the effect of high glucose on adipogenic differentiation of MSCs and might lead to an improvement in the diabetic treatment in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.