We explore the miniaturization edge of soft nanoimprint molds, and demonstrate their feasibility to ultra-high resolution patterning of polymer films on planar and curved substrates, as well as of chalcogenide glasses.
Scalable surface patterning of chalcogenide glasses is the crux for many optical applications of these promising optical materials. Here, a novel, resist‐free surface patterning of chalcogenide glasses with 3D relief microstructures is introduced, using direct radiation‐assisted thermal imprint. The imprint is based on a nanocomposite mold made of a carbon nanotube matrix and polydimethylsiloxane resin. To allow nanoimprint, the mold and glass substrate are confined between two elastic membranes, pneumatically pressed against each other, and controllably radiated by an infrared bulb. Since chalcogenide glass is transparent to infrared radiation, the radiation is mostly absorbed in the mold due to the embedded carbon nanotubes, so that the glass–mold interface is heated to the imprint temperature. By using this approach, the first of its type direct imprint of chalcogenide glass of any arbitrary form is demonstrated, including flat substrates and convex aspheric lenses. The composition and structure of imprinted chalcogenide glass are analyzed, and it is demonstrated that they are well maintained throughout the imprint. It is optically characterized both in transmission and reflection modes. It is believed that the innovation provides a quantum leap in the micro‐ and nano‐scale processing of chalcogenide glasses, and opens the pathway to their numerous applications.
Chalcogenide glasses are attractive materials for optical applications. However, these applications often require pattering of the surface with functional micro-/ nanostructures, which is challenging by traditional microfabrication. Here, we present a novel, robust, and scalable approach for the direct patterning of chalcogenide glasses, based on soft imprinting of a solvent-plasticized glass layer formed on the glass surface. We established a methodology for surfaces plasticizing, through tuning of its glass transition temperature by process conditions, without compromising on the chemical composition, structure, and optical properties of the plasticized layer. This control over the glass transition temperature allowed to imprint the surface of chalcogenide glass with features sized down to 20 nm, and achieve an unprecedented combination of full pattern transfer and complete maintenance of the shape of the imprinted substrate. We demonstrated two applications of our patterning approach: a diffraction grating, and a multifunctional pattern with both antireflective and highly hydrophobic water-repellent functionalities – a combination that has never been demonstrated for chalcogenide glasses. This work opens a new route for the nanofabrication of optical devices based on chalcogenide glasses and paves the way to numerous future applications for these important optical materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.