In spite of the development of numerous vaccines for the prevention of COVID-19 and the approval of several drugs for its treatment, there is still a great need for effective and inexpensive therapies against this disease. Previously, we showed that green tea and tea catechins interfere with coronavirus replication as well as coronavirus 3CL protease activity, and also showed lower COVID-19 morbidity and mortality in countries with higher green tea consumption. However, it is not clear whether green tea is still effective against the newer SARS-CoV-2 variants including omicron. It is also not known whether higher green tea consumption continues to contribute to lower COVID-19 morbidity and mortality now that vaccination rates in many countries are high. Here, we attempted to update the information regarding green tea in relation to COVID-19. Using pharmacological and ecological approaches, we found that EGCG as well as green tea inhibit the activity of the omicron variant 3CL protease efficiently, and there continues to be pronounced differences in COVID-19 morbidity and mortality between groups of countries with high and low green tea consumption as of December 6, 2022. These results collectively suggest that green tea continues to be effective against COVID-19 despite the new omicron variants and increased vaccination.
C1q and TNF-related 1 (C1QTNF1/CTRP1) is an adiponectin-associated protein belonging to the C1q/TNF-related protein family. Recent studies have shown that the C1q and TNF-related protein (CTRP) family is involved in cancer progression; however, the specific role of CTRP1 in tumor progression has not yet been elucidated. To examine the role of CTRP1 in tumor progression, we generated CTRP1 knockout A549 and HCT116 cell lines, which reduced the expression levels of nuclear factor (NF)-κB-dependent and metastasis-promoting transcripts. We demonstrated that CTRP1 knockout inhibited the cell proliferation and invasion and tumor growth. Finally, database analysis showed that CTRP1 expression was upregulated in metastatic cancers and elevated levels of CTRP1 were associated with poor prognosis. These results suggest that CTRP1 expression contributes to NF-κB signaling and promotes tumor progression.
We improve an effective lower bound on the number of imaginary quadratic fields whose absolute discriminants are less than or equal to [Formula: see text] and whose ideal class groups have 3-rank at least one, which is [Formula: see text]. We also obtain a better bound on the number of imaginary quadratic fields with 3-rank at least two, which is [Formula: see text]; the best-known lower bound so far is [Formula: see text]. For finding these effective lower bounds, we use the Scholz criteria and the parametric families of quadratic fields [Formula: see text] and [Formula: see text] (defined as follows) with escalatory case. We find new infinite families of quadratic fields [Formula: see text] and [Formula: see text], where [Formula: see text] and [Formula: see text] are integers subject to certain conditions for [Formula: see text]. More specifically, we find a complete criterion for the 3-rank difference between [Formula: see text] and its associated quadratic field [Formula: see text] to be one; this is the escalatory case. We also obtain a sufficient condition for the family [Formula: see text] and its associated family [Formula: see text] to have escalatory case. We illustrate some selective implementation results on the 3-class group ranks of [Formula: see text] and [Formula: see text] for [Formula: see text].
The coronavirus disease 2019 (COVID-19) pandemic has caused more than six million deaths worldwide since 2019. Although vaccines are available, novel variants of coronavirus are expected to appear continuously, and there is a need for a more effective remedy for coronavirus disease. In this report, we isolated eupatin from Inula japonica flowers and showed that it inhibits the coronavirus 3 chymotrypsin-like (3CL) protease as well as viral replication. We showed that eupatin treatment inhibits SARS-CoV-2 3CL-protease, and computational modeling demonstrated that it interacts with key residues of 3CL-protease. Further, the treatment decreased the number of plaques formed by human coronavirus OC43 (HCoV-OC43) infection and decreased viral protein and RNA levels in the media. These results indicate that eupatin inhibits coronavirus replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.