Previous studies have demonstrated that temporarily increasing the permeability of the blood-brain barrier using focused ultrasound can reduce β-amyloid plaque load and improve cognitive function in animal models of Alzheimer’s disease. However, the underlying mechanism and duration for which the effects of one treatment persists for are unknown. Here, we used in vivo two-photon fluorescence microscopy to track changes in β-amyloid plaque sizes in the TgCRND8 mouse model of Alzheimer’s disease after one focused ultrasound treatment. We found that one treatment reduced plaques to 62 ± 16% (p ≤ 0.001) of their original volume two days post-sonication; this decrease in size persisted for two weeks. We then sought to evaluate the effectiveness of biweekly focused ultrasound treatments using magnetic resonance imaging-guided focused ultrasound treatments. Three to five biweekly treatments resulted in a 27 ± 7% (p ≤ 0.01) decrease in plaque number and 40 ± 10% (p ≤ 0.01) decrease in plaque surface area compared to untreated littermates. This study demonstrates that one focused ultrasound treatment reduces the size of existing β-amyloid plaques for two weeks, and that repeated biweekly focused ultrasound treatments is an effective method of reducing β-amyloid pathology in moderate-to-late stages of Alzheimer’s disease.
Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.