Th antibacterial activity of metal oxide nanoparticles has received marked global attention as they can be specifically synthesized to exhibit significant toxicity to bacteria. The importance of their application as antibacterial agents is evident keeping in mind the limited range and effectiveness of antibiotics, on one hand, and the plethora of metal oxides, on the other, along with the propensity of nanoparticles to induce resistance being much lower than that of antibiotics. Effective inhibition against a wide range of bacteria is well known for several nano oxides consisting of one metal (Fe3O4, TiO2, CuO, ZnO), whereas, research in the field of multi-metal oxides still demands extensive exploration. This is understandable given that the relationship between physicochemical properties and biological activity seems to be complex and difficult to generalize even for metal oxide nanoparticles consisting of only one metal component. Also, despite the broad scope that metal oxide nanoparticles have as antibacterial agents, there arise problems in practical applications taking into account the cytotoxic effects. In this respect, the consideration of polymetallic oxides for biological applications becomes even greater since these can provide synergetic effects and unify the best physicochemical properties of their components. For instance, strong antibacterial efficiency specific of one metal oxide can be complemented by non-cytotoxicity of another. This review presents the main methods and technological advances in fabrication of nanostructured metal oxides with a particular emphasis to multi-metal oxide nanoparticles, their antibacterial effects and cytotoxicity.
Optical absorption and photoluminescence emission properties of dehydroxylated MgO and CaO nanocrystals are discussed with respect to particle morphology and size. On MgO nanocubes with pronounced corner and edge features two emission bands at 3.4 and 3.3 eV result from the excitation of 4-coordinated surface O(4C)(2-) anions in edges at 5.4 eV and of regular oxygen-terminated corners at 4.6 eV, respectively. Morphologically ill-defined CaO particles are a factor of 5 larger, do not display regular corner features, and show only one photoluminescence emission band at 3.0 eV. The associated excitation spectrum indicates electronic excitations above the energy required to excite regular oxygen-terminated CaO corners. It is concluded that in the case of morphologically well-defined MgO nanocubes variations in the next coordination of oxygen-terminated corners can effectively be probed by photoluminescence spectroscopy and thus allows for discrimination between 3-coordinated surface O(2-) in regular corner sites and kinks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.