Various investigators such as Khan (1974), Chandra (2002), and Liendler (2005) have determined the degree of approximation of 2π-periodic signals (functions) belonging to Lip(α,r)class of functions through trigonometric Fourier approximation using different summability matrices with monotone rows. Recently, Mittal et al. (2007 and 2011) have obtained the degree of approximation of signals belonging to Lip(α,r)- class by general summability matrix, which generalize some of the results of Chandra (2002) and results of Leindler (2005), respectively. In this paper, we determine the degree of approximation of functions belonging to Lip αandW(Lr,ξ(t)) classes by using Cesáro-Nörlund(C1·Np)summability without monotonicity condition on{pn}, which in turn generalizes the results of Lal (2009). We also note some errors appearing in the paper of Lal (2009) and rectify them in the light of observations of Rhoades et al. (2011).
In this paper, we established a generalized theorem on a minimal set of sufficient conditions for absolute summability factors by applying a sequence of a wider class (quasi-power increasing sequence) and the absolute Cesàro summability for an infinite series. We further obtained well-known applications of the above theorem as corollaries, under suitable conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.