We report the successful use of a gastro-resistant covalent organic framework for in vivo oral delivery of insulin.
Hyperglycemia is a major risk factor in the development of diabetic complications and promotes vascular complications through dysregulation of endothelial cell function. Various mechanisms have been proposed for endothelial cell dysregulation but the early transcriptomic alterations of endothelial cells under hyperglycemic conditions are not well documented. Here we use deep time-series RNA-seq profiling of human aortic endothelial cells (HAECs) following exposure to normal (NG) and high glucose (HG) conditions over a time course from baseline to 24 h to identify the early and transient transcriptomic changes, alteration of molecular networks, and their temporal dynamics. The analysis revealed that the most significant pathway activation/inhibition events take place in the 1- to 4-h transition and identified distinct clusters of genes that underlie a cascade of coordinated transcriptional events unique to HG conditions. Temporal co-expression and causal network analysis implicate the activation of type 2 diabetes (T2D) and growth factor signalling pathways including STAT3 and NF-κB. These results document HAEC transcriptional changes induced by hyperglycemic conditions and provide basic insight into the rapid molecular alterations that promote endothelial cell dysfunction.
The cytotoxic self-aggregation of β-amyloid (Aβ) peptide and islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of Alzheimer’s disease (AD) and Type 2 diabetes (T2D), respectively. Increasing evidence, particularly the co-deposition of Aβ and IAPP in both brain and pancreatic tissues, suggests that Aβ and IAPP cross-interaction may be responsible for a pathological link between AD and T2D. Here, we examined the nature of IAPP-Aβ40 co-aggregation and its inhibition by small molecules. In specific, we characterized the kinetic profiles, morphologies, secondary structures and toxicities of IAPP-Aβ40 hetero-assemblies and compared them to those formed by their homo-assemblies. We demonstrated that monomeric IAPP and Aβ40 form stable hetero-dimers and hetero-assemblies that further aggregate into β-sheet-rich hetero-aggregates that are toxic (cell viability <50%) to both PC-12 cells, a neuronal cell model, and RIN-m5F cells, a pancreatic cell model for β-cells. We then selected polyphenolic candidates to inhibit IAPP or Aβ40 self-aggregation and examined the inhibitory effect of the most potent candidate on IAPP-Aβ40 co-aggregation. We demonstrated that epigallocatechin gallate (EGCG) form inter-molecular hydrogen bonds with each of IAPP and Aβ40. We also showed that EGCG reduced hetero-aggregate formation and resulted in lower β-sheets content and higher unordered structures in IAPP-Aβ40-EGCG samples. Importantly, we showed that EGCG is highly effective in reducing the toxicity of IAPP-Aβ40 hetero-aggregates on both cell models, specifically at concentrations that are equivalent to or are 2.5-fold higher than the mixed peptide concentrations. To the best of our knowledge, this is the first study to report the inhibition of IAPP-Aβ40 co-aggregation by small molecules. We conclude that EGCG is a promising candidate to prevent co-aggregation and cytotoxicity of IAPP-Aβ40, which in turn, contribute to the pathological link between AD and T2D.
SummaryMetabolic reprogramming is one of the hallmarks of tumorigenesis. Using a combination of multi-omics, here we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. As part of the nutrient-sensing PI3K/Akt/mTOR pathway, NM1 forms a positive feedback loop with mTOR and directly affects mitochondrial oxidative phosphorylation (OXPHOS) via transcriptional regulation of mitochondrial transcription factors TFAM and PGC1α. NM1 depletion leads to suppression of PI3K/Akt/mTOR pathway, underdevelopment of mitochondria inner cristae, and redistribution of mitochondria within the cell, which is associated with reduced expression of OXPHOS genes, decreased mitochondrial DNA copy number and deregulated mitochondrial dynamics. This leads to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis and with a metabolomic profile typical for cancer cells, namely, increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. We show that NM1 KO cells form solid tumors in a nude mouse model even though they have suppressed the PI3K/Akt/mTOR signaling pathway suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient signal for carcinogenesis. We suggest that NM1 plays a key role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the early onset of tumorigenesis.
Context Tuberculosis is one of the major infectious diseases, with people of reproductive age group having a high risk of infection. Aims The present study was designed to understand the consequences of anti-tuberculosis drugs (ATDs) used in DOTS (directly observed treatment short course) schedule on ovarian function. Methods Adult female Swiss albino mice were orally administered with combinations of ATDs used in the DOTS schedule every day for 4 weeks. At 2 weeks after the cessation of ATDs administration, the endocrine changes and ovarian function were assessed in mice. Key results Administration of ATDs to mice resulted in a prolonged estrous cycle, reduced ovarian follicle reserve, alteration in FSH, LH, and progesterone level, and decreased the number of ovulated oocytes. Further, the degree of fragmentation, degeneration, abnormal distribution of cytoplasmic organelles, abnormal spindle organisation, and chromosomal misalignment were higher in oocytes that were ovulated following superovulation. Blastocysts derived from ATDs treated mice had significantly lower total cell numbers and greater DNA damage. A marginal increase in the number of resorbed fetuses was observed in all the ATDs treated groups except in the multidrug resistance treatment group. Male progeny of ATDs treated mice had decreased sperm count and lower progressive motility, while female progeny exhibited a non-significant reduction in the number of oocytes ovulated. Conclusions The results of this study suggest that ATDs can have significant adverse effects on the ovarian reserve, cytoplasmic organisation of oocytes, and can potentially cause transgenerational changes. Implications The findings of the present study indicate ovarian toxicity of ATDs and warrant further research in the direction of identifying alternate drugs with minimal toxicity, and strategies to mitigate the ovarian toxicity induced by these drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.