Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image analysis and diagnosis. Here, we highlight an image classification convolutional neural network for detecting shrapnel in ultrasound images. As an initial application, different shrapnel types and sizes were embedded first in a tissue mimicking phantom and then in swine thigh tissue. The algorithm architecture was optimized stepwise by minimizing validation loss and maximizing F1 score. The final algorithm design trained on tissue phantom image sets had an F1 score of 0.95 and an area under the ROC curve of 0.95. It maintained higher than a 90% accuracy for each of 8 shrapnel types. When trained only on swine image sets, the optimized algorithm format had even higher metrics: F1 and area under the ROC curve of 0.99. Overall, the algorithm developed resulted in strong classification accuracy for both the tissue phantom and animal tissue. This framework can be applied to other trauma relevant imaging applications such as internal bleeding to further simplify trauma medicine when resources and image interpretation are scarce.
Ultrasound imaging is essential in emergency medicine and combat casualty care, oftentimes used as a critical triage tool. However, identifying injuries, such as shrapnel embedded in tissue or a pneumothorax, can be challenging without extensive ultrasonography training, which may not be available in prolonged field care or emergency medicine scenarios. Artificial intelligence can simplify this by automating image interpretation but only if it can be deployed for use in real time. We previously developed a deep learning neural network model specifically designed to identify shrapnel in ultrasound images, termed ShrapML. Here, we expand on that work to further optimize the model and compare its performance to that of conventional models trained on the ImageNet database, such as ResNet50. Through Bayesian optimization, the model’s parameters were further refined, resulting in an F1 score of 0.98. We compared the proposed model to four conventional models: DarkNet-19, GoogleNet, MobileNetv2, and SqueezeNet which were down-selected based on speed and testing accuracy. Although MobileNetv2 achieved a higher accuracy than ShrapML, there was a tradeoff between accuracy and speed, with ShrapML being 10× faster than MobileNetv2. In conclusion, real-time deployment of algorithms such as ShrapML can reduce the cognitive load for medical providers in high-stress emergency or miliary medicine scenarios.
Tissue phantoms are important for medical research to reduce the use of animal or human tissue when testing or troubleshooting new devices or technology. Development of machine-learning detection tools that rely on large ultrasound imaging data sets can potentially be streamlined with high quality phantoms that closely mimic important features of biological tissue. Here, we demonstrate how an ultrasound-compliant tissue phantom comprised of multiple layers of gelatin to mimic bone, fat, and muscle tissue types can be used for machine-learning training. This tissue phantom has a heterogeneous composition to introduce tissue level complexity and subject variability in the tissue phantom. Various shrapnel types were inserted into the phantom for ultrasound imaging to supplement swine shrapnel image sets captured for applications such as deep learning algorithms. With a previously developed shrapnel detection algorithm, blind swine test image accuracy reached more than 95% accuracy when training was comprised of 75% tissue phantom images, with the rest being swine images. For comparison, a conventional MobileNetv2 deep learning model was trained with the same training image set and achieved over 90% accuracy in swine predictions. Overall, the tissue phantom demonstrated high performance for developing deep learning models for ultrasound image classification.
Ultrasound imaging is a critical tool for triaging and diagnosing subjects but only if images can be properly interpreted. Unfortunately, in remote or military medicine situations, the expertise to interpret images can be lacking. Machine-learning image interpretation models that are explainable to the end user and deployable in real time with ultrasound equipment have the potential to solve this problem. We have previously shown how a YOLOv3 (You Only Look Once) object detection algorithm can be used for tracking shrapnel, artery, vein, and nerve fiber bundle features in a tissue phantom. However, real-time implementation of an object detection model requires optimizing model inference time. Here, we compare the performance of five different object detection deep-learning models with varying architectures and trainable parameters to determine which model is most suitable for this shrapnel-tracking ultrasound image application. We used a dataset of more than 16,000 ultrasound images from gelatin tissue phantoms containing artery, vein, nerve fiber, and shrapnel features for training and evaluating each model. Every object detection model surpassed 0.85 mean average precision except for the detection transformer model. Overall, the YOLOv7tiny model had the higher mean average precision and quickest inference time, making it the obvious model choice for this ultrasound imaging application. Other object detection models were overfitting the data as was determined by lower testing performance compared with higher training performance. In summary, the YOLOv7tiny object detection model had the best mean average precision and inference time and was selected as optimal for this application. Next steps will implement this object detection algorithm for real-time applications, an important next step in translating AI models for emergency and military medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.