Gestational diabetes mellitus (GDM) shows a deficiency in the metabolism of Dglucose and other nutrients, thereby negatively affecting the foetoplacental vascular endothelium. Maternal hyperglycaemia and hyperinsulinemia play an important role in the aetiology of GDM. A combination of these and other factors predisposes women to developing GDM with pre-pregnancy normal weight, viz. classic GDM. However, women with GDM and prepregnancy obesity (gestational diabesity, GDty) or overweight (GDMow) show a different metabolic status than women with classic GDM. GDty and GDMow are associated with altered l-arginine/nitric oxide and insulin/adenosine axis signalling in the human foetoplacental microvascular and macrovascular endothelium. These alterations differ from those observed in classic GDM. Here, we have reviewed the consequences of GDty and GDMow in the modulation of foetoplacental endothelial cell function, highlighting studies describing the modulation of intracellular pH homeostasis and the potential implications of NO generation and adenosine signalling in GDty-associated foetal vascular insulin resistance. Moreover, with an increase in the rate of obesity in women of childbearing 2 of 15 | CORNEJO Et al.
In fish, the role that cholinesterases (ChEs) play in tissues other than those implicated in neural activity, as well as the involvement of carboxylesterases (CbEs) and cytochrome P450 isoenzymes (CYPs) in drug metabolism needs investigation. For that, Senegalese sole (Solea senegalensis) specimens were selected for characterization of several type B esterases and hepatic CYPs in order to further use this fish as sentinel. ChEs (acetylcholinesterase (AChE) and pseudocholinesterases (butyrylcholinesterase-BuChE and propionilcholinesterase-PrChE)) and CbEs were measured in brain, plasma, kidney, liver, gonad, muscle and gills. Moreover, seven fluorimetric substrates were selected to study CYP related activities in fish liver. The results showed that AChE was the dominant ChE form in brain whereas pseudocholinesterases were absent in most tissues, as demonstrated by low enzymatic activities using specific substrates and the lack of inhibition by iso-OMPA. Plasma exhibited trace activities of all the esterases assayed and no BuChE activity. CbEs were dominant in liver, but they were also present in kidney and brain. For CbE determination, α-naphtyl acetate (αNA) was seen as the most adequate substrate as it displayed higher enzymatic activities and showed more in vitro sensitivity to the carbamate eserine and the organophosphate pesticide dichlorvos. Alkoxyresorufin-O-dealkylase (EROD and BFCOD) activities, indicative in mammals of CYP1A and CYP3A subfamilies, respectively, were the highest microsomal CYP-related activities in liver. The results of this preliminary work allow us to select the most adequate esterase substrate, tissue and hepatic CYP substrate for further monitoring studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.