Mapping road networks is currently both expensive and labor-intensive. High-resolution aerial imagery provides a promising avenue to automatically infer a road network. Prior work uses convolutional neural networks (CNNs) to detect which pixels belong to a road (segmentation), and then uses complex post-processing heuristics to infer graph connectivity. We show that these segmentation methods have high error rates because noisy CNN outputs are difficult to correct. We propose RoadTracer, a new method to automatically construct accurate road network maps from aerial images. RoadTracer uses an iterative search process guided by a CNN-based decision function to derive the road network graph directly from the output of the CNN. We compare our approach with a segmentation method on fifteen cities, and find that at a 5% error rate, RoadTracer correctly captures 45% more junctions across these cities.
Motivated by the recent research on diversity-aware search, we investigate the k-diverse near neighbor reporting problem. The problem is defined as follows: given a query point q, report the maximum diversity set S of k points in the ball of radius r around q. The diversity of a set S is measured by the minimum distance between any pair of points in S (the higher, the better).We present two approximation algorithms for the case where the points live in a d-dimensional Hamming space. Our algorithms guarantee query times that are sub-linear in n and only polynomial in the diversity parameter k, as well as the dimension d. For low values of k, our algorithms achieve sub-linear query times even if the number of points within distance r from a query q is linear in n. To the best of our knowledge, these are the first known algorithms of this type that offer provable guarantees.
News articles typically drive a lot of traffic in the form of comments posted by users on a news site. Such usergenerated content tends to carry additional information such as entities and sentiment. In general, when articles are recommended to users, only popularity (e.g., most shared and most commented), recency, and sometimes (manual) editors' picks (based on daily hot topics), are considered. We formalize a novel recommendation problem where the goal is to find the closest most diverse articles to the one the user is currently browsing. Our diversity measure incorporates entities and sentiment extracted from comments. Given the realtime nature of our recommendations, we explore the applicability of nearest neighbor algorithms to solve the problem. Our user study on real opinion articles from aljazeera.net and reuters.com validates the use of entities and sentiment extracted from articles and their comments to achieve news diversity when compared to content-based diversity. Finally, our performance experiments show the real-time feasibility of our solution.
In this paper we address the challenge of inferring the road network of a city from crowd-sourced GPS traces. While the problem has been addressed before, our solution has the following unique characteristics: (i) we formulate the road network inference problem as a network alignment optimization problem where both the nodes and edges of the network have to be inferred, (ii) we propose both an offline (Kharita) and an online (Kharita * ) algorithm which are intuitive and capture the key aspects of the optimization formulation but are scalable and accurate. The Kharita * in particular is, to the best of our knowledge, the first known online algorithm for map inference, (iii) we test our approach on two real data sets and both our code and data sets have been made available for research reproducibility.
Air pollution imposes significant environmental and health risks worldwide and is expected to deteriorate in the coming decade as cities expand. Measuring population exposure to air pollution is crucial to quantifying risks to public health. In this work, we introduce a big data analytics framework to model residents' stay and commuters' travel exposure to outdoor PM 2.5 and evaluate their environmental justice, with Beijing as an example. Using mo-bile phone and census data, we first infer travel demand of the population to derive residents' stay activities in each analysis zone, and then focus on commuters and estimate their travel routes with a traffic assignment model. Based on air quality observations from monitoring stations and a spatial interpolation model, we estimate the outdoor PM 2.5 concentrations at a 500-meter grid level and map them to road networks. We then estimate the travel exposure for each road segment by multiplying the PM 2.5 concentration and travel time spent on the road. By combining the estimated PM 2.5 exposure and housing price harnessed from online housing transaction platforms, we discover that in the winter, Beijing commuters with low wealth level are exposed to 13% more PM 2.5 per hour than those with high wealth level when staying at home, but exposed to less PM 2.5 by 5% when commuting the same distance (due to lighter traffic congestion in suburban areas). We also find that the residents from the southern suburbs of Beijing have both lower level of wealth and higher stayand travel-exposure to PM 2.5 , especially in the winter. These findings inform more equitable environmental mitigation policies for future sustainable development in Beijing. Finally, or the first time in the literature, we compare the results of exposure estimated from passive data with subjective measures of perceived air quality (PAQ) from a survey. The PAQ data was collected via a mobile-app. The comparison confirms consistencies in results and the advantages of the big data for air pollution exposure assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.