Multi-task learning (MTL) approaches are actively used for various natural language processing (NLP) tasks. The Multi-Task Deep Neural Network (MT-DNN) has contributed significantly to improving the performance of natural language understanding (NLU) tasks. However, one drawback is that confusion about the language representation of various tasks arises during the training of the MT-DNN model. Inspired by the internal-transfer weighting of MTL in medical imaging, we introduce a Sequential and Intensive Weighted Language Modeling (SIWLM) scheme. The SIWLM consists of two stages: (1) Sequential weighted learning (SWL), which trains a model to learn entire tasks sequentially and concentrically, and (2) Intensive weighted learning (IWL), which enables the model to focus on the central task. We apply this scheme to the MT-DNN model and call this model the MTDNN-SIWLM. Our model achieves higher performance than the existing reference algorithms on six out of the eight GLUE benchmark tasks. Moreover, our model outperforms MT-DNN by 0.77 on average on the overall task. Finally, we conducted a thorough empirical investigation to determine the optimal weight for each GLUE task.
This paper describes a community effort to improve earlier versions of the full-text corpus of Genomics & Informatics by semi-automatically detecting and correcting PDF-to-text conversion errors and optical character recognition errors during the first hackathon of Genomics & Informatics Annotation Hackathon (GIAH) event. Extracting text from multi-column biomedical documents such as Genomics & Informatics is known to be notoriously difficult. The hackathon was piloted as part of a coding competition of the ELTEC College of Engineering at Ewha Womans University in order to enable researchers and students to create or annotate their own versions of the Genomics & Informatics corpus, to gain and create knowledge about corpus linguistics, and simultaneously to acquire tangible and transferable skills. The proposed projects during the hackathon harness an internal database containing different versions of the corpus and annotations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.