Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, ε r) in the range of 2–4. As a consequence, Coulombically bound electron‐hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance ε r of well‐known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of ε r together with poly(p‐phenylene vinylene) and diketopyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of ε r with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl‐C61‐butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.
We present a new phase-field model for strongly anisotropic crystal and epitaxial growth using regularized, anisotropic Cahn–Hilliard-type equations. Such problems arise during the growth and coarsening of thin films. When the anisotropic surface energy is sufficiently strong, sharp corners form and unregularized anisotropic Cahn–Hilliard equations become ill-posed. Our models contain a high-order Willmore regularization, where the square of the mean curvature is added to the energy, to remove the ill-posedness. The regularized equations are sixth order in space. A key feature of our approach is the development of a new formulation in which the interface thickness is independent of crystallographic orientation. Using the method of matched asymptotic expansions, we show the convergence of our phase-field model to the general sharp-interface model. We present two- and three-dimensional numerical results using an adaptive, nonlinear multigrid finite-difference method. We find excellent agreement between the dynamics of the new phase-field model and the sharp-interface model. The computed equilibrium shapes using the new model also match a recently developed analytical sharp-interface theory that describes the rounding of the sharp corners by the Willmore regularization.
The invention of new organic materials with high dielectric constants is of extreme importance for the development of organic-based devices such as organic solar cells. We report on a synthetic way to increase the dielectric constant of fullerene derivatives. It is demonstrated that introducing triethylene glycol monoethyl ether (teg) side chains into fulleropyrrolidines increases the dielectric constant by ~46 percent without devaluation of optical properties, electron mobility and the energy level of the compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.