Increasing epidemiological and experimental evidence implicates gestational infections as one important factor involved in the pathogenesis of several neuropsychiatric disorders. Corresponding preclinical model systems based upon maternal immune activation (MIA) by treatment of the pregnant female have been developed. These MIA animal model systems have been successfully used in basic and translational research approaches, contributing to the investigation of the underlying pathophysiological mechanisms at the molecular, cellular and behavioral levels. The present article focuses on the application of a specific MIA rodent paradigm, based upon treatment of the gestating dam with the viral mimic polyinosinic-polycytidilic acid (Poly(I:C)), a synthetic analog of double-stranded RNA (dsRNA) which activates the Toll-like receptor 3 (TLR3) pathway. Important advantages and constraints of this animal model will be discussed, specifically in light of gestational infection as one vulnerability factor contributing to the complex etiology of mood and psychotic disorders, which are likely the result of intricate multi-level gene×environment interactions. Improving our currently incomplete understanding of the molecular pathomechanistic principles underlying these disorders is a prerequisite for the development of alternative therapeutic approaches which are critically needed in light of the important drawbacks and limitations of currently available pharmacological treatment options regarding efficacy and side effects. The particular relevance of the Poly(I:C) MIA model for the discovery of novel drug targets for symptomatic and preventive therapeutic strategies in mood and psychotic disorders is highlighted in this review article.
Gestational infection is increasingly being recognized for its involvement as causative mechanism in severe developmental brain abnormalities and its contribution to the pathogenesis of psychopathologies later in life. First observations in the widely accepted maternal immune activation (MIA) model based upon the systemic administration of the viral mimetic Polyinosinic:polycytidylic acid (poly(I:C)) have recently suggested a transmission of behavioral and transcriptional traits across generations. Although maternal care behavior (MCB) is known as essential mediator of the transgenerational effects of environmental challenges on offspring brain function and behavior, the possible propagation of alterations of MCB resulting from MIA to following generations has not yet been examined. Here we show that poly(I:C) stimulation at embryonic day 12.5 (E12.5) leads to aberrant MCB and that this effect is transmitted to the female F1 offspring. The transgenerational effects on MCB are paralleled by enhanced depression-like behavior in the second generation F2 offspring with contributions of both maternal and paternal heritages. Examination of offspring hippocampal expression of genes known as targets of MCB and relevant for ensuing non-genetic transmission of altered brain function and behavior revealed transgenerationally conserved and modified expressional patterns in the F1 and F2 generation. Collectively these data firstly demonstrate the transgenerational transmission of the impact of gestational immune activation on the reproductive care behavior of the mother. Behavioral and molecular characteristics of first and second generation offspring suggest transgenerationally imprinted consequences of gestational infection on psychopathological traits related to mood disorders which remain to be examined in future cross-fostering experiments.
Major depressive disorder (MDD) is one of the most debilitating psychiatric diseases, affecting a large percentage of the population worldwide. Currently, the underlying pathomechanisms remain incompletely understood, hampering the development of critically needed alternative therapeutic strategies, which further largely depends on the availability of suitable model systems.Here we used a mouse model of early life stress – a precipitating factor for the development of MDD – featuring infectious stress through maternal immune activation (MIA) by polyinosinic:polycytidilic acid (Poly(I:C)) to examine epigenetic modulations as potential molecular correlates of the alterations in brain structure, function and behavior. We found that in adult female MIA offspring anhedonic behavior was associated with modulations of the global histone acetylation profile in the hippocampus. Morevoer, specific changes at the promoter and in the expression of the serotonin transporter (SERT), critically involved in the etiology of MDD and pharmacological antidepressant treatment were detected. Furthermore, an accompanying reduction in hippocampal levels of histone deacetylase (HDAC) 1 was observed in MIA as compared to control offspring.Based on these results we propose a model in which the long-lasting impact of MIA on depression-like behavior and associated molecular and cellular aberrations in the offspring is brought about by the modulation of epigenetic processes and consequent enduring changes in gene expression. These data provide additional insights into the principles underlying the impact of early infectious stress on the development of MDD and may contribute to the development of new targets for antidepressant therapy.
Aberrant serotonergic neurotransmission in the brain is considered at the core of the pathophysiological mechanisms involved in neuropsychiatric disorders. Gene by environment interactions contribute to the development of depression and involve modulation of the availability and functional activity of the serotonin transporter (SERT). Using behavioral and in vivo electrophysiological approaches together with biochemical, molecular-biological and molecular imaging tools we establish Flotillin-1 (Flot1) as a novel protein interacting with SERT and demonstrate its involvement in the response to chronic corticosterone (CORT) treatment. We show that genetic Flot1 depletion augments chronic CORT-induced behavioral despair and describe concomitant alterations in the expression of SERT, activity of serotonergic neurons and alterations of the glucocorticoid receptor transport machinery. Hence, we propose a role for Flot1 as modulatory factor for the depressogenic consequences of chronic CORT exposure and suggest Flotillin-1-dependent regulation of SERT expression and activity of serotonergic neurotransmission at the core of the molecular mechanisms involved.
Depression is a very common psychiatric disorder affecting approximately 300 million people worldwide with the prevalence being twice as high in women as in men. Despite intense research efforts in recent decades, the neurobiological basis underlying depression remains incompletely understood. However, the exposure to chronic stress is widely accepted to constitute a precipitating factor for the development of this mental disorder. Several animal models for the investigation of the pathogenetic link between chronic stress and depression exist and have yielded important insights. The present study aimed at comparing two published protocols for the induction of depression-like behavior in mice based on chronic oral glucocorticoid application. Given the gender distribution in the prevalence of depression, the second goal of this study was to reveal possible differences in the behavioral responses of female and male mice to corticosterone (CORT) treatment. CORT treatment was found to modulate depression-like behavior in selected behavioral paradigms in a sex- and protocol-specific manner. These data are of relevance for the experimental design and interpretation of future studies in the field and further highlight the relevance of “sex as biological variable” to be considered an important parameter for experimental planning and interpretation of results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.