This study compares the measured activation volumes in motor cortex as well as the fluctuation noise and off-resonance characteristics for 1-, 2-, and 4-shot spiral gradient-recalled echo blood oxygen level dependent contrast functional magnetic resonance imaging (fMRI) acquisitions, under conditions of constant resolution and scan time and with two readout durations. Reconstructions were made with and without self-navigator correction. It was found that the navigator correction provided a 50% reduction in image fluctuation noise with 4-shot acquisitions, and that multishot acquisitions perform as well as single-shot techniques when self-navigation is employed. An analysis of blurring showed that off-resonance delta f causes blurring when delta f > 1/(2*Tad), where Tad is the readout duration. Off-resonance effects were readily corrected during reconstruction with retrospective linear shim, even with the longer readout duration needed for single-shot methods. With navigator and shim correction, single-shot and multishot spiral methods are highly effective for fMRI acquisitions.
Previous studies have found that the P300 or P3 event-related potential (ERP) component is useful in the diagnosis and treatment of many disorders that influence CNS function. However, the anatomic locations of brain regions involved in this response are not precisely known. In the present event-related functional magnetic resonance imaging (fMRI) study, methods of stimulus presentation, data acquisition, and data analysis were optimized for the detection of brain activity in response to stimuli presented in the three-stimulus oddball task. This paradigm involves the interleaved, pseudorandom presentation of single block-letter target and distractor stimuli that previously were found to generate the P3b and P3a ERP subcomponents, respectively, and frequent standard stimuli. Target stimuli evoked fMRI signal increases in multiple brain regions including the thalamus, the bilateral cerebellum, and the occipital-temporal cortex as well as bilateral superior, medial, inferior frontal, inferior parietal, superior temporal, precentral, postcentral, cingulate, insular, left middle temporal, and right middle frontal gyri. Distractor stimuli evoked an fMRI signal change bilaterally in inferior anterior cingulate, medial frontal, inferior frontal, and right superior frontal gyri, with additional activity in bilateral inferior parietal lobules, lateral cerebellar hemispheres and vermis, and left fusiform, middle occipital, and superior temporal gyri. Significant variation in the amplitude and polarity of distractor-evoked activity was observed across stimulus repetitions. No overlap was observed between target- and distractor-evoked activity. These event-related fMRI results shed light on the anatomy of responses to target and distractor stimuli that have proven useful in many ERP studies of healthy and clinically impaired populations.
The influence of local static magnetic field inhomogeneities on gradient-echo imaging is discussed and the underlying theoretical aspects are reviewed. A high-resolution approach is suggested to suppress image distortion and restore signal loss due to spin dephasing. Acquisition of three-dimensional data sets not only overcomes part of the limitations associated with gradient echoes but also makes it possible to extract local information about the strength or direction of background gradients and relative susceptibility changes between different tissues. Applications of the suggested approach in the human brain for anatomical imaging as well as for extraction of physical and physiological parameters are presented and discussed.
There is a clear need to develop non-invasive markers of substantia nigra progression in Parkinson's disease. We previously found elevated free-water levels in the substantia nigra for patients with Parkinson's disease compared with controls in single-site and multi-site cohorts. Here, we test the hypotheses that free-water levels in the substantia nigra of Parkinson's disease increase following 1 year of progression, and that baseline free-water levels in the substantia nigra predict the change in bradykinesia following 1 year. We conducted a longitudinal study in controls (n = 19) and patients with Parkinson's disease (n = 25). Diffusion imaging and clinical data were collected at baseline and after 1 year. Free-water analyses were performed on diffusion imaging data using blinded, hand-drawn regions of interest in the posterior substantia nigra. A group effect indicated free-water values were increased in the posterior substantia nigra of patients with Parkinson's disease compared with controls (P = 0.003) and we observed a significant group × time interaction (P < 0.05). Free-water values increased for the Parkinson's disease group after 1 year (P = 0.006), whereas control free-water values did not change. Baseline free-water values predicted the 1 year change in bradykinesia scores (r = 0.74, P < 0.001) and 1 year change in Montreal Cognitive Assessment scores (r = -0.44, P = 0.03). Free-water in the posterior substantia nigra is elevated in Parkinson's disease, increases with progression of Parkinson's disease, and predicts subsequent changes in bradykinesia and cognitive status over 1 year. These findings demonstrate that free-water provides a potential non-invasive progression marker of the substantia nigra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.