Human cytochrome P450s 2C9 and 2C19 metabolize many important drugs including tolbutamide, phenytoin, and (S)-warfarin. Although they differ at only 43 of 490 amino acids, sulfaphenazole (SFZ) is a potent and selective inhibitor of P450 2C9 with an IC50 and a spectrally determined binding constant, KS, of <1 microM. P450 2C19 is not affected by SFZ at concentrations up to 100 microM. A panel of CYP2C9/2C19 chimeric proteins was constructed in order to identify the sequence differences that underlie this difference in SFZ binding. Replacement of amino acids 227-338 in 2C19 with the corresponding region of 2C9 resulted in high-affinity SFZ binding (KS approximately 4 microM) that was not seen when a shorter fragment of 2C9 was substituted (227-282). However, replacement of amino acids 283-338 resulted in extremely low holoenzyme expression levels in Escherichia coli, indicating protein instability. A single mutation, E241K, which homology modeling indicated would restore a favorable charge pair interaction between K241 in helix G and E288 in helix I, led to successful expression of this chimera that exhibited a KS < 10 microM for SFZ. Systematic replacement of the remaining differing amino acids revealed that two amino acid substitutions in 2C19 (N286S, I289N) confer high-affinity SFZ binding (KS < 5 microM). When combined with a third substitution, E241K, the resulting 2C19 triple mutant exhibited a high cataltyic efficiency for warfarin metabolism with the relaxed stereo- and regiospecificity of 2C19 and a lower KM for (S)-warfarin metabolism (<10 microM) typical of 2C9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.