Eight novel task-specific ionic liquids (TSILs) based on the thioglycolate anion designed for heavy metal extraction have been prepared and characterized by H andC NMR, UV-Vis, infrared, ESI-MS, conductivity, viscosity, density and thermal properties. Evaluation of their time-resolved extraction abilities towards cadmium(II) and copper(II) in aqueous solutions have been investigated where distribution ratios up to 1200 were observed. For elucidation of the IL extraction mode, crystals were grown where Cd(II) was converted with an excess of S-butyl thioglycolate. It was found by X-ray diffraction analysis that cadmium is coordinated by five oxygen and one sulfur donor atoms provided by two thioglycolate molecules and one water molecule. Leaching behavior of the hydrophobic ionic liquids into aqueous systems was studied by TOC (total dissolved organic carbon) measurements. Additionally, the immobilization on polypropylene was elucidated and revealed slower metal extraction rates and similar leaching behavior. Finally, recovery processes for cadmium and copper after extraction were performed and recyclability was successfully proven for both metals.
This study aims to develop novel ammonium and phosphonium ionic liquids (ILs) with thiosalicylate (TS) derivatives as anions and evaluate their extracting efficiencies towards heavy metals in aqueous solutions. Six ILs were synthesized, characterized, and investigated for their extracting efficacies for cadmium, copper, and zinc. Liquid-liquid extractions of Cu, Zn, or Cd with ILs after 1-24h using model solutions (pH 7; 0.1M CaCl2) were assessed using flame atomic absorption spectroscopy (F-AAS). Phosphonium-based ILs trihexyltetradecylphosphonium 2-(propylthio)benzoate [P66614][PTB] and 2-(benzylthio)benzoate [P66614][BTB] showed best extraction efficiency for copper and cadmium, respectively and zinc was extracted to a high degree by [P66614][BTB] exclusively.
Two water-soluble thiosemicarbazone-proline (H2L(1)) and thiosemicarbazone-homoproline hybrids (H2L(2)) were synthesised. By reaction of H2L(1) with NiCl2·6H2O, PdCl2 and CuCl2·2H2O in ethanol, the series of square-planar complexes [Ni(H2L(1))Cl]Cl·1.3H2O (1·1.3H2O), [Pd(H2L(1))Cl]Cl·H2O (2·H2O) and [Cu(H2L(1))Cl]Cl·0.7H2O (3·0.7H2O) was prepared, and starting from H2L(2) and CuCl2·2H2O in methanol, the complex [Cu(H2L(2))Cl2]·H2O (4·H2O) was obtained. The compounds have been characterised by elemental analysis, spectroscopic methods (IR, UV-vis and NMR spectroscopy), ESI mass spectrometry and single crystal X-ray crystallography (H2L(1), 1, 2 and 4). As a solid, 1 is diamagnetic, while it is paramagnetic in methanolic solution. The effective magnetic moment of 3.26 B.M. at room temperature indicates the change in coordination geometry from square-planar to octahedral upon dissolution. The in vitro anticancer potency of ligand precursors H2L(1) and H2L(2) and metal complexes 1-4 was studied in three human cancer cell lines (A549, CH1 and SW480) and in noncancerous murine embryonal fibroblasts (NIH/3T3), and the mechanism of cell death was also assayed by flow cytometry. Clear-cut structure-activity relationships have been established. The metal ions exert marked effects in a divergent manner: copper(ii) increases, whereas nickel(ii) and palladium(ii) decrease the cytotoxicity of the hybrids. The antiproliferative activity of H2L(1) and metal complexes 1-3 decreases in all three tumour cell lines in the following rank order: 3 > H2L(1) > 1 > 2. The role of square-planar geometry in the underlying mechanism of cytotoxicity of the metal complexes studied seems to be negligible, while structural modifications at the terminal amino group of thiosemicarbazide and proline moieties are significant for enhancing the antiproliferative activity of both hybrids and copper(ii) complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.