We provide the first evidence that cfDNA has selective immunostimulatory effects on human monocytes. This process may contribute to the proinflammatory milieu observed in HD patients.
Autonomous release of hematopoietic growth factors may play a crucial role in the pathogenesis of certain hematological malignancies. Because of its cytokine synthesis-inhibiting action, interleukin 10 (IL-10) could be a potentially useful molecule to affect leukemic cell growth in such disorders. Chronic myelomonocytic leukemia (CMML) cells spontaneously form myeloid colonies (colony-forming units-granulocyte/macrophage) in methylcellulose, suggesting an autocrine growth factor-mediated mechanism. We studied the effect of recombinant human IL-10 (rhIL-10) on the in vitro growth of mononuclear cells obtained from peripheral blood or bone marrow of patients with CMML. IL-10 specifically binding to leukemic cells had a profound and dose-dependent inhibitory effect on autonomous in vitro growth of CMML cells. IL-10 significantly inhibited the spontaneous growth of myeloid colonies in methylcellulose in 10/11 patients, and autonomous CMML cell growth in suspension in 5/5 patients tested. Spontaneous colony growth from CMML cells was also markedly reduced by addition of antigranulocyte/macrophage colony-stimulating factor (GM-CSF) antibodies, but not by addition of antibodies against G-CSF, IL-3, or IL-6, IL-10-induced suppression of CMML cell growth was reversed by the addition of exogenous GM-CSF and correlated with a substantial decrease in GM-CSF production by leukemic cells, both at the mRNA and protein levels. Our data indicate that IL-10 profoundly inhibits the autonomous growth of CMML cells in vitro most likely through suppression of endogenous GM-CSF release. This observation suggests therapeutic evaluation of rhIL-10 in patients with CMML.
These results suggest that the combination of matrix glycation and inflammation up-regulates the activation of the endothelial cell adhesion cascade, a mechanism that might contribute to the increased burden of atherosclerotic morbidity and mortality in patients suffering from diabetes mellitus or chronic renal failure.
Spontaneous growth of myeloid colonies (colony-forming unit–granulocyte-macrophage [CFU-GM]) can be observed in methylcellulose cultures containing peripheral blood mononuclear cells (PB-MNCs) and is supposedly caused by the release of colony-stimulating factors (CSF ) by accessory cells. Because of its cytokine synthesis-inhibiting effects on T lymphocytes and monocytes, interleukin-10 (IL-10) may be a potential candidate for indirect modulation of hematopoiesis. We studied the effect of recombinant human IL-10 (rhIL-10) on spontaneous growth of myeloid colonies derived from human PB-MNCs. A total of 10 ng/mL of IL-10 almost completely inhibited spontaneous CFU-GM proliferation (by 95.1%; P < .001, n = 7) in unseparated PB-MNCs. This effect was dose-dependent and specific, because a neutralizing anti–IL-10 antibody was able to prevent IL-10–induced suppression of CFU-GM growth. Spontaneous CFU-GM growth, which required the presence of both monocytes (CD14+ cells) and T lymphocytes (CD3+ cells), was also greatly suppressed by a neutralizing anti–granulocyte-macrophage CSF (GM-CSF ) antibody but was only slightly or not at all inhibited by antibodies against G-CSF or IL-3. Moreover, IL-10–suppressed colony growth could be completely restored by the addition of exogenous GM-CSF. Using semiquantitative polymerase chain reaction, we were able to show that GM-CSF transcripts that spontaneously increased in PB-MNCs within 48 hours of culture were markedly reduced by the addition of IL-10. Inhibiton of GM-CSF production in PB-MNCs by IL-10 was also confirmed at the protein level by measuring GM-CSF levels in suspension cultures. Our findings suggest that autonomous CFU-GM growth, resulting from an interaction of monocytes and T lymphocytes, is mainly caused by endogenous GM-CSF release and can be profoundly suppressed by the addition of exogenous IL-10. Considering the strong inhibitory action of IL-10 on GM-CSF production and spontaneous cell growth in vitro, this cytokine may be useful in myeloid malignancies in which autocrine and/or paracrine mechanisms involving GM-CSF are likely to play a pathogenetic role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.