The adsorption of CO on Al2O3- and SiO2-supported Ru catalysts has been investigated through FTIR spectroscopy. Deconvolution of the spectra obtained reveals the presence of 11 distinct bands in the case of Ru/Al2O3 and 10 bands in the case of Ru/SiO2, which were assigned to different carbonyl species adsorbed on reduced as well as partially oxidized Ru sites. Although most of these bands on both supports are similar, they exhibit substantial differences in terms of stability. In general, the analogous CO species on Ru/Al2O3 are adsorbed stronger than those on Ru/SiO2, with the most stable species observed being a dicarbonyl adsorbed on metallic Ru (i.e., Ru0(CO)2). Following sintering of the Ru, the ratio of multicarbonyl to monocarbonyl adsorption is reduced substantially because of the lack of isolated sites or small Ru clusters that enable the formation of multicarbonyl species via oxidative disruption. Finally, in the presence of O2, the main features observed correspond to monocarbonyl, dicarbonyl, and tricarbonyl species adsorbed on partially oxidized Run+. The intensities of all bands decrease drastically at temperatures above 210 degrees C because of the onset of CO oxidation, which results in substantially reduced surface coverage.
TiO2- and gamma-Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in situ FTIR spectroscopy after activation at various conditions, and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When gamma-Al2O3 was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive toward H2 than CO. Consequently, Pt/TiO2 shows substantially lower selectivities toward CO oxidation under PROX conditions than Pt/gamma-Al2O3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.