In situ generated aryl diazonium cations were synthesized in the electrochemical cell by reaction of the corresponding amines with NaNO 2 in aqueous HCl. This paper reports a study of the formation of mixed layers from in situ generated aryl diazonium cations. Firstly, glassy carbon (GC) and gold electrode surfaces were modified with five single in situ generated aryl diazonium salts to obtain their corresponding reductive potential followed by the modification of GC and gold surfaces with eight binary mixed layers of in situ generated aryl diazonium salts. The difference between GC and gold surfaces in terms of in situ formation of two-component aryl diazonium salt films was compared. The behavior of the mixed layers formed from in situ generated aryl diazonium salts relative to diazonium salts that were pre-synthesized prior to surface modification was also investigated. Cyclic voltammetry and X-ray photoelectron spectroscopy were used to characterize the resulting modified GC and gold surfaces. It is found that for some aryl diazonium salts the potential at which reductive adsorption is achieved on gold and GC surfaces is significantly different. For the eight sets of binary mixed layers, the species with more anodic potential are more difficult to attach to the both GC and gold surfaces. The behavior of the mixed layers formed from in situ generated aryl diazonium salts and the pre-synthesized diazonium salts is similar; which emphasizes the advantage of the in situ approach without any apparent difference in behavior to the presynthesized diazonium salts.
An immuno-biosensing interface comprising a mixed layer of an oligo(ethylene glycol) (OEG) component, and an oligo(phenylethynylene) molecular wire (MW) is described. The OEG controls the interaction of proteins and electroactive interferences with the surface and the MW allows electrochemical communication to the underlying glassy carbon electrode. The layers are formed from in situ generated-aryl diazonium cations. To the distal end of the MW, a redox probe 1,1'-di(aminomethyl)ferrocene is attached followed by the surface bound epitope (the structural feature the antibody selectively recognizes) to which an antibody would bind. Association or disassociation of the antibody with the sensing interface causes a modulation of the ferrocene electrochemistry. X-ray photoelectron spectroscopy, cyclic voltammetry, and square wave voltammetry have been used to characterize the step-wise fabrication of the sensing interface. The influence of the molar ratio of the MW and OEG deposited onto the sensor interface was explored relative to the final sensor sensitivity. Five combinations of MW/OEG 1:0, 1:20, 1:50, 1:75 and 1:100 were tested on sensor sensitivity detection for a model analyte (biotin) free in solution, via a displacement assay. The ratio of 1:50 was found to give the highest sensitivity. At this ratio, good reproducibility (RSD 6.8%) and repeatability (RSD 9.6%) was achieved. This immuno-biosensor provides an intervention free immuno-biosensing platform for agriculture and biomedical samples.
Type 2 diabetes mellitus (T2DM) is a pressing health issue that threatens global health and the productivity of populations worldwide. Despite its long-recognized role in diabetes management, glycated hemoglobin (HbA1c) only received WHO endorsement as a T2DM diagnostic tool in 2011. Although conventional plasma-specific tests have long been utilized to diagnose T2DM, the public should be informed that plasma-specific tests are not markedly better than HbA1c tests, particularly in terms of variability and convenience for diagnosing diabetes. In the midst of the debates associated with establishing HbA1c as the preeminent diabetes diagnostic tool, unceasing efforts to standardize HbA1c tests have played an integral part in achieving more efficient communication from laboratory to clinical practice and thus better diabetes care. This review discusses the current status of HbA1c tests in the diagnosis, prevention, treatment and management of T2DM across the globe, focusing on increasing the recognition of glycated hemoglobin variants with effective utilization of different HbA1c methods, updating the current status of HbA1c standardization programs, tapping into the potential of POC analyzers to establish a cost-effective HbA1c test for diabetes care, and inspiring the advancement of HbA1c biosensors for future clinical usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.