This review discusses previous literature that has examined the influence of muscular strength on various factors associated with athletic performance and the benefits of achieving greater muscular strength. Greater muscular strength is strongly associated with improved force-time characteristics that contribute to an athlete's overall performance. Much research supports the notion that greater muscular strength can enhance the ability to perform general sport skills such as jumping, sprinting, and change of direction tasks. Further research indicates that stronger athletes produce superior performances during sport specific tasks. Greater muscular strength allows an individual to potentiate earlier and to a greater extent, but also decreases the risk of injury. Sport scientists and practitioners may monitor an individual's strength characteristics using isometric, dynamic, and reactive strength tests and variables. Relative strength may be classified into strength deficit, strength association, or strength reserve phases. The phase an individual falls into may directly affect their level of performance or training emphasis. Based on the extant literature, it appears that there may be no substitute for greater muscular strength when it comes to improving an individual's performance across a wide range of both general and sport specific skills while simultaneously reducing their risk of injury when performing these skills. Therefore, sport scientists and practitioners should implement long-term training strategies that promote the greatest muscular strength within the required context of each sport/event. Future research should examine how force-time characteristics, general and specific sport skills, potentiation ability, and injury rates change as individuals transition from certain standards or the suggested phases of strength to another.
This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.
Research has often examined the relationship between 1 or 2 measures of strength and change of direction (COD) ability reporting inconsistent relationships to performance. These inconsistencies may be the result of the strength assessment used and the assumption that 1 measure of strength can represent all "types" of strength required during a COD task. Therefore the purpose of this study was to determine the relationship between several lower-body strength and power measures, COD, and agility performance. Twelve (n = 12) elite female basketball athletes completed a maximal dynamic back squat, isometric midthigh pull, eccentric and concentric only back squat, and a countermovement jump, followed by 2 COD tests (505 and T-test) and a reactive agility test. Pearson product-moment correlation and stepwise regression analysis were performed on all variables. The percentage contribution of each strength measure to an athletes total strength score was also determined. Our results demonstrated that both COD tests were significantly correlated to maximal dynamic, isometric, concentric, and eccentric strength (r = -0.79 to -0.89), with eccentric strength identified as the sole predictor of COD performance. Agility performance did not correlate with any measure of strength (r = -0.08 to -0.36), whereas lower-body power demonstrated no correlation to either agility or COD performance (r = -0.19 to -0.46). These findings demonstrate the importance of multiple strength components for COD ability, highlighting eccentric strength as a deterministic factor of COD performance. Coaches should aim to develop a well-rounded strength base in athletes; ensuring eccentric strength is developed as effectively as the often-emphasized concentric or overall dynamic strength capacity.
Nimphius, S, Callaghan, SJ, Spiteri, T, and Lockie, RG. Change of direction deficit: A more isolated measure of change of direction performance than total 505 time. J Strength Cond Res 30 (11): 3024-3032, 2016-Most change of direction (COD) tests use total time to evaluate COD performance. This makes it difficult to identify COD ability because the majority of time is a function of linear running. The COD deficit has been proposed as a practical measure to isolate COD ability independent of sprint speed. This study evaluated relationships between sprint time, 505 time, and COD deficit, and whether the COD deficit identified a different and more isolated measure of COD ability compared with 505 time. Seventeen cricketers performed the 505 for both left and right sides and 30-m sprint tests (with 10-m split time). The COD deficit for both sides was calculated as the difference between average 505 and 10-m time. Correlations were calculated between all variables (p ≤ 0.05). To compare 505 time and COD deficit, z-scores were calculated; the difference in these scores was evaluated for each subject. The COD deficit correlated to 505 (r = 0.74-0.81) but not sprint time (r = -0.11 to 0.10). In contrast, 505 time did correlate with sprint time (r = 0.52-0.70). Five of 17 subjects were classified differently for COD ability when comparing standardized scores for 505 time vs. COD deficit. Most subjects (88-94%) had a meaningful difference between 505 time and COD deficit. Using 505 time to determine COD ability may result in a large amount of replication to linear speed assessments. The COD deficit may be a practical tool to better isolate and identify an athlete's ability to change direction.
Change of direction (COD) and agility require the integration of multiple components to produce a faster performance. However, the mechanisms contributing to a faster performance without the confounding factor of athlete expertise or gender is currently unknown. Therefore, the purpose of this study was to assess body composition, strength, and kinetic profile required for a faster COD and agility performance across multiple directional changes. Six faster and 6 slower (n = 12) elite female basketball athletes completed a maximal dynamic back squat; eccentric and concentric only back squat; isometric midthigh pull; whole-body scan to determine lean, fat, and total mass; 505 COD test; T-test; and a multidirectional agility test over in-ground force plates to obtain relevant kinetic measures. Group (faster and slower) by test (2 × 3) multivariate analyses of variance with follow-up analyses of variance were conducted to examine differences between faster and slower groups and each COD and agility test (p ≤ 0.05). Faster athletes during the 505 COD test produced significantly greater vertical force (p = 0.002) and eccentric and isometric strength capacity (p = 0.001). Faster agility and T-test athletes demonstrated significantly shorter contact times (p = 0.001), greater propulsive impulse (p = 0.02), isometric strength, and relative lean mass compared with slower athletes. Differences between faster athletes across each test seem to be attributed to the mechanical demands of the directional change, increasing force and impulse application as the degree of directional change increased. These findings indicate that different mechanical properties are required to produce a faster COD and agility performances, and the importance of a greater strength capacity to enable greater mechanical adjustment through force production and body control, during different directional changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.