An approach is presented that permits
wide and reversible control
of the optical bandwidth of spherical gold nanoparticles assembled
on thermoreversible hydrogel colloids for various plasmonic-based
thermochromisms. Temperature-dependent swelling and shrinking behaviors
of the hydrogel colloids in aqueous systems manipulated assembly structures
and optical signals of gold nanoparticles in the hybrid colloids.
The optical bandwidths of the hybrid colloids increased with temperature,
and thermoreversible bandwidth variations of the hybrid colloids were
increased with the diameter of gold nanoparticles (from 15 to 51 nm).
These hybrid colloids exhibited multiple colors switching during temperature
changes (maximum four colors: wine ↔ violet ↔ dark blue
↔ faint blue). For the hybrid colloids showing a small bandwidth
variation, another method was introduced to display different color
switching.
We present a simple and industrially accessible method of producing liquid crystalline lipid nanoparticles with various internal structures based on phytantriol, Pluronic F127, and vitamin E acetate. Bilayer vesicles were produced when an ethanolic solution dissolving the lipid components was mixed with deionized water. After the evaporation of ethanol from the aqueous mixture, vesicles were transformed into lipid-filled liquid crystalline nanoparticles with well-defined internal structures such as hexagonal lattices (mostly inverted cubic Pn3m), lined or coiled pattern (inverted hexagonal H2), and disordered structure (inverse microemulsion, L2), depending on the compositions. Further studies suggested that their internal structures were also affected by temperature. The internal structures were characterized from cryo-TEM and small-angle X-ray scattering results. Microcalorimetry studies were performed to investigate the degree of molecular ordering/crystallinity of lipid components within the nanostructures. From the comparative studies, we demonstrated the present method could produce the lipid nanoparticles with similar characteristics to those made from a conventional method. More importantly, the production only requires simple tools for mixing and ethanol evaporation and it is possible to produce 10 kg or so per batch of aqueous lipid nanoparticles dispersions, enabling the large-scale production of the liquid crystalline nanoparticles for various biomedical applications.
We present gold (Au) and silver (Ag) nanoparticles (NPs) could be used not only for stimuli-responsive optical sensors but also for the quantification of radical compounds when these nanoparticles are suitably combined with polymeric materials. When Au NPs are assembled 2-dimensionally on the surface of hydrogel NPs which respond to temperatures, the hybrid NPs displayed thermoreversible multiple color switching. Accordingly, optical bandwidths of the hybrid NPs are reversibly changed with temperatures: with hybrid NPs assembled with 51 nm Au NPs, prominent optical signals are recorded at 900 nm at 50 °C while most of extinction signals are shown below 600 nm at room temperatures. In addition, we demonstrate the modification of Ag NPs’ surfaces (nanocubes and nanospheres) with polyelectrolytes (either positive or negative) could extend the quantifiable detection ranges of radical compounds. Through the surface modification of Ag NPs, the polyelectrolytes protect the Ag NPs by probably either retarding (forming diffusion barriers) or preventing (blocking/entrapping/scavenging) the arrival of radicals to Ag NPs or both. The roles of the polyelectrolytes are demonstrated by using radical compounds produced from tetrahydrofuran and H2O2. From the results, we could obtain calibration curves for the wide-range quantification of radical compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.