This study investigates the effect of support structures on the properties of Inconel 718 (i.e., IN718) parts produced by the laser powder bed fusion (LPBF) additive manufacturing process. Specifically, the effects of support structure shape (i.e., pin-type, angled-type, cone-type) and geometry (i.e., support wall thickness, and gap) on their composition, hardness, microstructure, and material/time consumption are investigated and compared to the conventionally fabricated Inconel 718. From the microstructural analysis, the deepest melt pools appeared to be formed in the sample fabricated on top of the pin-type support structure having a relatively low wall thickness. The XRD results conveyed that a proper selection of geometrical variables for designing support structure results in elevated levels of the strengthening phases of IN718. The sample fabricated on top of the pin-type support structure showed the highest Vickers hardness value of 460.5 HV, which was even higher than what was reported for the heat-treated wrought Inconel 718 (355–385 HV). Moreover, for the thinner support wall thickness, an improvement in the hardness value of the fabricated samples was observed. This study urges a reconsideration of the common approach of selecting supports for additive manufacturing of samples when a higher quality of the as-fabricated parts is desired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.