In this paper, we have assumed an inventory multi-objective optimization model under intuitionistic fuzziness. In modelling, we have considered the situations where triangular intuitionistic fuzzy numbers used to express some of the input information which associated with decision variables. Further, a ranking function approach by considering linear and the nonlinear degree of membership functions have been used to obtain the crisp form of the fuzzy parameters. Finally, the fuzzy goal programming approach has been used to solve the resultant model to obtain the optimal ordering quantity. Also, a comparative study of the formulated problem under intuitionistic fuzziness has been done with a deterministic model of inventory. The concept of the paper is explained through a numerical example.
The transportation problem in real life is an uncertain problem with multi-objective decision-making. In particular, by considering the conflicting objectives/criteria such as transportation costs, transportation time, discount costs, labour costs, damage costs, decision maker searches for the best transportation setup to find out the optimum shipment quantity subject to certain capacity restrictions on each route. In this paper, capacitated stochastic transportation problem is formulated as a multi-objective optimization model along with some capacitated restrictions on the route. In the formulated problem, we assume that parameters of the supply and demand constraints' follow gamma distribution, which is handled by the chance constrained programming approach and the maximum likelihood estimation approach has been used to assess the probabilistic distributions of the unknown parameters with a specified probability level. Furthermore, some of the objective function's coefficients are consider as ambiguous in nature. The ambiguity in the formulated problem has been presented by interval type 2 fuzzy parameter and converted into the deterministic form using an expected value function approach. A case study on transportation illustrates the computational procedure.
Uncertainty is unavoidable and addressing the same is inevitable. That everything is available at our doorstep is due to a well-managed modern global supply chain, which takes place despite its efficiency and effectiveness being threatened by various sources of uncertainty originating from the demand side, supply side, manufacturing process, and planning and control systems. This paper addresses the demand- and supply-rooted uncertainty. In order to cope with uncertainty within the constrained multi-objective supply chain network, this paper develops a fuzzy goal programming methodology, with solution procedures. The probabilistic fuzzy goal multi-objective supply chain network (PFG-MOSCN) problem is thus formulated and then solved by three different approaches, namely, simple additive goal programming approach, weighted goal programming approach, and pre-emptive goal programming approach, to obtain the optimal solution. The proposed work links fuzziness in transportation cost and delivery time with randomness in demand and supply parameters. The results may prove to be important for operational managers in manufacturing units, interested in optimizing transportation costs and delivery time, and implicitly, in optimizing profits. A numerical example is provided to illustrate the proposed model.
There is an ever-growing demand for sustainable development (SD) plans, in order to foster a country's economic growth by implementing suitable policies and initiative programs for the development of the primary, the secondary and the tertiary sectors. We present a multi-criteria modeling approach using the linear programming problem (LPP) framework for a simultaneous optimization of these three sectors. Furthermore, we develop a fuzzy goal programming (FGP) model that provides an optimal allocation of resources by achieving future goals on the gross domestic product (GDP), the electricity consumption (EC) and the greenhouse gas (GHG) emissions. Furthermore, a weighted model of FGP is presented to obtain varying solutions according to the priorities set by the decision-maker for achieving future goals of GDP growth, EC and GHG emissions. The presented models provide useful insight for decision-makers when implementing strategies across different sectors. As a model country, we chose India by the year 2030. A study of economic policies and sustainable development goals (SDGs) for India is finally carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.