This particular study focuses on investigating the heat and mass transport characteristics of a liquid flow across the conical gap (CG) of a cone-disk apparatus (CDA). The cone and disk may be taken as stationary or rotating at varying angular velocities. Consideration is given to heat transport affected by solar radiation. The Rosseland approximation is used for heat radiation calculations in the current work. To observe the mass deposition variation on the surface, the effect of thermophoresis is taken into account. Appropriate similarity transformations are used to convert the three-dimensional boundary-layer governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs) system. Particularly for the flow, thermal and concentration profiles, plots are provided and examined. Results reveal that the flow field upsurges significantly with upward values of Reynolds numbers for both cone and disk rotations. The increase in values of the radiation parameter improves heat transport. Moreover, it is detected that the stationary cone and rotating disk model shows improved heat transport for an increase in the values of the radiation parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.