Follow this and additional works at: https://docs.lib.purdue.edu/coolingpubs This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information. Sudhakar, S.; Weibel, J. A.; Zhou, F.; Dede, E. M.; and Garimella, S V., "Area-scalable high-heat-flux dissipation at low thermal resistance using a capillary-fed two-layer evaporator wick" (2019). CTRC Research Publications. Paper 347. http://dx.doi.org/doi. AbstractA two-layer sintered porous evaporator wick for use in vapor chambers is shown to offer very high performance in passive high-heat-flux dissipation over large areas at a low thermal resistance. The twolayer wick has an upper cap layer dedicated to capillary liquid feeding of a thin base layer below that supports boiling. An array of vertical posts bridges these two layers for liquid feeding, while vents in the cap layer provide an unimpeded pathway for vapor removal from the base wick. The two-layer wick is fabricated using a combination of sintering and laser machining processes. The thermal resistance of the wicks during boiling is characterized in a saturated environment that replicates the capillary-fed working conditions of a vapor chamber evaporator. Thermal characterization tests are first performed using conventional single-layer evaporator wicks to analyze the effect of sintered particle size on capillary-fed boiling of water. Of the particle size ranges tested, wicks sintered from 180-212 μm-diameter particles provided the best combination of high dryout heat flux and a low boiling resistance. A two-layer evaporator wick comprising particles of this optimal size and a 15 × 15 array of liquid feeding posts yielded a maximum heat flux dissipation of 485 W/cm 2 over a 1 cm 2 heat input area while also maintaining a low thermal resistance of only ~0.052 K/W. The thermal performance of the two-layer wick is compared against various hybrid and biporous evaporator wicks previously investigated in the literature. While previous wick designs are typically restricted to small areas and low power levels or high surface superheats when dissipating such heat fluxes, the unique area-scalability of the two-layer wick design allows it to achieve an unprecedented combination of high total power and low-thermal-resistance heat dissipation over larger areas than were previously possible.
Vapor chambers with transformative evaporator wick designs capable of passively dissipating high heat fluxes over large areas, while maintaining low thermal resistances, can meet the thermal management needs of next-generation power semiconductor devices. Our prior work proposed a two-layer evaporator wick structure to enhance the performance of vapor chambers operating at high heat fluxes. The current study experimentally characterizes the capillary-fed boiling heat transfer behavior in such a two-layer evaporator wick, compared to a homogeneous (single-layer) wick, over a 1 cm 2 evaporator area. The two-layer design comprises a thin base wick layer that is fed with liquid from a thick cap wick layer above using an array of vertical posts. The two-layer wick is fabricated using a sequence of sintering and laser-machining steps to form the base wick layer (200 µm), array of liquid-feeding posts, and cap wick layer (800 µm) using 90-106 µm copper particles. A test facility is constructed to replicate the conditions that exist at the evaporator of a vapor chamber; the novel facility design uses a physical restriction to prevent flooding of the wicks during testing. Two-layer wicks having 5×5 and 10×10 arrays of liquid feeding posts are characterized, along with a 200 µm-thick single-layer evaporator wick. The 10×10 array provides a >400% enhancement in the dryout heat flux compared to the single-layer wick. High-speed visualizations are used to identify the characteristic regimes of boiling operations for the wicks. The single-layer wick exhibits a partial dryout mode of operation, where a dry spot formed in the center of the heated evaporator area causes an increase in the thermal resistance with heat flux. In contrast, the distributed feeding provided by the two-layer wicks mitigates the development of this partial dryout regime and maintains a constant low resistance (~ 0.1 K/W) during capillary-fed boiling until a complete dryout event occurs. This study demonstrates the significant enhancement in dryout heat flux offered by the liquid-feeding approach realized in the two-layer evaporator wicks characterized here.
A hybrid two-layer evaporator wick is proposed for passive, high-heat-flux dissipation over large areas using a vapor chamber heat spreader. For such applications, the evaporator wick layer must be designed to simultaneously minimize the device temperature rise and minimize the flow resistance to capillary feeding of the wick. This requires a strategy that exploits the benefits of a thin wick for reduced thermal resistance and a thick wick for liquid feeding. In the present design, a thick cap layer of wick material evenly routes liquid to a thin, low-thermal-resistance base layer through an array of vertical liquid-feeding posts. This twolayer structure decouples the functions of liquid resupply (cap layer) and capillary-fed boiling heat transfer (base layer), making the design scalable to heat input areas of ~1 cm 2 for operation at 1 kW/cm 2. A reduced-order model is developed to demonstrate the potential performance of a vapor chamber incorporating such a two-layer evaporator wick design. The model comprises simplified hydraulic and thermal resistance networks for predicting the capillarylimited maximum heat flux and the overall thermal resistance, respectively. The reduced-order model is validated against a higher fidelity numerical model and then used to analyze the performance of the vapor chamber with varying two-layer wick geometric feature sizes. The two-layer wick design is found to sustain liquid feeding at higher heat fluxes, without reaching the capillary limit, compared to single-layer evaporator wick designs.
Vapor chambers developed for high-heat-flux operation require advanced evaporator wick designs that can sustain capillary flow when boiling occurs over the heater region. A two-layer evaporator wick integrates a thin base wick layer that is supplied with liquid from a thick cap layer through an array of vertical feeding posts distributed over the heated area. This design allows boiling to occur within the thin base layer, while separating the incoming liquid feeding and outgoing vapor venting pathways. In our prior work, boiling in two-layer wicks was experimentally demonstrated to provide high-heat-flux dissipation over larger heater areas and at low thermal resistance. The current study experimentally explores the effect of two-layer wick design parameters, specifically the dimensions that alter the area available for liquid feeding and vapor venting, on the thermal performance and dryout limit of the wick, using water as the working fluid. Four different two-layer wick designs are fabricated over a 1 cm 2 evaporator area by sintering 180-212 μm copper particles. Increasing the vapor-venting area from 7% to 16% of the total evaporator area yielded a significant increase in the dryout limit, from 315 W/cm 2 to 405 W/cm 2 . Increasing the liquidfeeding area using wider posts increased the dryout limit further. Finally, a parametrically optimized design with fewer but larger posts and vents resulted in better performance compared to a design with denser features. With this two-layer wick design, we demonstrate an extremely high dryout limit of 512 W/cm 2 over the large 1 cm 2 heated area at a thermal resistance of 0.08 K/W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.