There is compelling evidence that active Cl absorption by a variety of epithelia, widely distributed throughout the animal kingdom, is the result of an electrically neutral Na-coupled transport process at the luminal membrane and that the energy for transcellular Cl movement is derived from the Na gradient across that barrier. These co-transport processes are found predominantly in "leaky" or "moderately leaky" epithelia and permit these tissues to absorb Na and Cl with high degrees of efficacy. In addition, there is a growing body of evidence that cyclic AMP and Ca-induced electrogenic Cl secretion by a wide variety of epithelia may involve electrically neutral, Na-coupled Cl entry across the contraluminal membrane and that the energy for these secretory processes is derived from the Na-gradient across that barrier. A model for electrogenic Cl secretion that accounts for the available data is presented.
The effective hydrodynamic radii of small uncharged molecules in dilute aqueous solution were determined using Einstein's classical theory of viscosity. The radii thus obtained are those of a hypothetical sphere whose hydrodynamic behavior is the same as that of the solute molecule plus that water of hydration which is too firmly bound to partake in the viscous shearing process. The results obtained compare favorably with radii determined from molecular models constructed in accordance with atomic dimensions compiled by Pauling. Although the application of the Einstein theory to molecules whose size is comparable to that of water represents a considerable extrapolation, the results suggest that this deviation from the assumptions of the theory, in the case of the molecules studied, is of second order importance.Employing the viscometric radii, we have formulated an empirical correction of the Stokes-Einstein diffusion equation. This correction is similar in form to those previously proposed by Cunningham (22) and Millikan (91) and is of particular significance when the solute molecule is comparable in size to the discontinuities of the surrounding medium. The molecular radii of a number of small organic molecules obtained by means of the corrected Stokes-Einstein equation do not differ significantly from the radii obtained from molecular models of these compounds.Few satisfactory methods are available for the evaluation of the sizes of small uncharged molecules as they exist in dilute aqueous solution. In the case of molecules not much larger than water, in the range of 3 to 5/~, the existing methods are especially unsatisfactory. Radii determined from either molecular models or crystallographic studies make no allowance for hydration in aqueous solution. Electrostriction introduces an additional theoretical drawback to calculations based on the partial molal volume of solute in aqueous solution (1). The use of the Stokes-Einstein diffusion relationship for the determination of radii of small molecules has been criticized (2),
The transmural potential difference, short-circuit current, and Na fluxes have been investigated in an in vitro preparation of isolated rabbit ileum. When the tissue is perfused with a physiological buffer, the serosal surface is electrically positive with respect to the mucosal surface and the initial potential difference in the presence of glucose averages 9 mv. Unidirectional and net Na fluxes have been determined under a variety of conditions, and in each instance, most if not all of the simultaneously measured short-circuit current could be attributed to the active transport of Na from mucosa to serosa. Active Na transport is dependent upon the presence of intact aerobic metabolic pathways and is inhibited by low concentrations of ouabain in the serosal medium. A method is described for determining whether a unidirectional ionic flux is the result of passive diffusion alone, in the presence of active transport of that ion in the opposite direction. Using this method we have demonstrated that the serosa-to-mucosa flux of Na may be attributed to passive diffusion with no evidence for the presence of carrier-mediated exchange diffusion or the influence of solvent-drag.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.