In cyber-physical systems (CPS), physical behaviors are typically controlled by digital hardware. As a consequence, continuous behaviors are discretized by sampling and quantization prior to their processing. Quantifying the similarity between CPS behaviors and their specification is an important ingredient in evaluating correctness and quality of such systems. We propose a novel procedure for measuring robustness between digitized CPS signals and signal temporal logic (STL) specifications. We first equip STL with quantitative semantics based on the weighted edit distance, a metric that quantifies both space and time mismatches between digitized CPS behaviors. We then develop a dynamic programming algorithm for computing the robustness degree between digitized signals and STL specifications. In order to promote hardware-based monitors we implemented our approach in FPGA. We evaluated it on automotive benchmarks defined by research community, and also on realistic data obtained from magnetic sensor used in modern cars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.