BackgroundCav1.3 voltage-gated L-type calcium channels (LTCCs) are part of postsynaptic neuronal signaling networks. They play a key role in brain function, including fear memory and emotional and drug-taking behaviors. A whole-exome sequencing study identified a de novo mutation, p.A749G, in Cav1.3 α1-subunits (CACNA1D), the second main LTCC in the brain, as 1 of 62 high risk–conferring mutations in a cohort of patients with autism and intellectual disability. We screened all published genetic information available from whole-exome sequencing studies and identified a second de novo CACNA1D mutation, p.G407R. Both mutations are present only in the probands and not in their unaffected parents or siblings.MethodsWe functionally expressed both mutations in tsA-201 cells to study their functional consequences using whole-cell patch-clamp.ResultsThe mutations p.A749G and p.G407R caused dramatic changes in channel gating by shifting (~15 mV) the voltage dependence for steady-state activation and inactivation to more negative voltages (p.A749G) or by pronounced slowing of current inactivation during depolarizing stimuli (p.G407R). In both cases, these changes are compatible with a gain-of-function phenotype.ConclusionsOur data, together with the discovery that Cav1.3 gain-of-function causes primary aldosteronism with seizures, neurologic abnormalities, and intellectual disability, suggest that Cav1.3 gain-of-function mutations confer a major part of the risk for autism in the two probands and may even cause the disease. Our findings have immediate clinical relevance because blockers of LTCCs are available for therapeutic attempts in affected individuals. Patients should also be explored for other symptoms likely resulting from Cav1.3 hyperactivity, in particular, primary aldosteronism.
Somatic gain-of-function mutations of GNAQ and GNA11, which encode α subunits of heterotrimeric Gαq/11 proteins, occur in about 85% of cases of uveal melanoma (UM), the most common cancer of the adult eye. Molecular therapies to directly target these oncoproteins are lacking, and current treatment options rely on radiation, surgery, or inhibition of effector molecules downstream of these G proteins. A hallmark feature of oncogenic Gαq/11 proteins is their reduced intrinsic rate of hydrolysis of guanosine triphosphate (GTP), which results in their accumulation in the GTP-bound, active state. Here, we report that the cyclic depsipeptide FR900359 (FR) directly interacted with GTPase-deficient Gαq/11 proteins and preferentially inhibited mitogenic ERK signaling rather than canonical phospholipase Cβ (PLCβ) signaling driven by these oncogenes. Thereby, FR suppressed the proliferation of melanoma cells in culture and inhibited the growth of Gαq-driven UM mouse xenografts in vivo. In contrast, FR did not affect tumor growth when xenografts carried mutated B-RafV600E as the oncogenic driver. Because FR enabled suppression of malignant traits in cancer cells that are driven by activating mutations at codon 209 in Gαq/11 proteins, we envision that similar approaches could be taken to blunt the signaling of non-Gαq/11 G proteins.
Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in CaV1.1 and CaV1.3 Ca2+ channels bearing several S4 charge mutations. Our modeling predicts that mutations of CaV1.1-R1 (R528H/G, R897S) or CaV1.1-R2 (R900S, R1239H) linked to hypokalemic periodic paralysis type 1 and of CaV1.3-R3 (R990H) identified in aldosterone-producing adenomas conducts ω-currents in resting state, but not during voltage-sensing domain activation. The mechanism responsible for the ω-current and its amplitude depend on the number of charges in S4, the position of the mutated S4 charge and countercharges, and the nature of the replacing amino acid. Functional characterization validates the modeling prediction showing that CaV1.3-R990H channels conduct ω-currents at hyperpolarizing potentials, but not upon membrane depolarization compared with wild-type channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.