Duchenne Muscular Dystrophy (DMD) is caused by mutations in the dystrophin gene leading to dystrophin deficiency, muscle fiber degeneration and progressive fibrotic replacement of muscles. Givinostat, a histone deacetylase (HDAC) inhibitor, significantly reduced fibrosis and promoted compensatory muscle regeneration in mdx mice. This study was conducted to evaluate whether the beneficial histological effects of Givinostat could be extended to DMD boys. Twenty ambulant DMD boys aged 7 to <11 years on stable corticosteroid treatment were enrolled in the study and treated for ≥12 months with Givinostat. A muscle biopsy was collected at the beginning and at the end of treatment to evaluate the amount of muscle and fibrotic tissue. Histological effects were the primary objectives of the study. Treatment with Givinostat significantly increased the fraction of muscle tissue in the biopsies and reduced the amount of fibrotic tissue. It also substantially reduced tissue necrosis and fatty replacement. Overall the drug was safe and tolerated. Improvement in functional tests was not observed in this study, but the sample size of the study was not sufficient to draw definitive conclusions. This study showed that treatment with Givinostat for more than 1 year significantly counteracted histological disease progression in ambulant DMD boys aged 7 to 10 years.
Ullrich syndrome is a recessive congenital muscular dystrophy affecting connective tissue and muscle. The molecular basis is unknown. Reverse transcription-PCR amplification performed on RNA extracted from fibroblasts or muscle of three Ullrich patients followed by heteroduplex analysis displayed heteroduplexes in one of the three genes coding for collagen type VI (COL6). In patient A, we detected a homozygous insertion of a C leading to a premature termination codon in the triple-helical domain of COL6A2 mRNA. Both healthy consanguineous parents were carriers. In patient B, we found a deletion of 28 nucleotides because of an A --> G substitution at nucleotide -2 of intron 17 causing the activation of a cryptic acceptor site inside exon 18. The second mutation was an exon skipping because of a G --> A substitution at nucleotide -1 of intron 23. Both mutations are present in an affected brother. The first mutation is also present in the healthy mother, whereas the second mutation is carried by their healthy father. In patient C, we found only one mutation so far-the same deletion of 28 nucleotides found in patient B. In this case, it was a de novo mutation, as it is absent in her parents. mRNA and protein analysis of patient B showed very low amounts of COL6A2 mRNA and of COL6. A near total absence of COL6 was demonstrated by immunofluorescence in fibroblasts and muscle. Our results demonstrate that Ullrich syndrome is caused by recessive mutations leading to a severe reduction of COL6.
MEDNIK syndrome-acronym for mental retardation, enteropathy, deafness, neuropathy, ichthyosis, keratodermia-is caused by AP1S1 gene mutations, encoding σ1A, the small subunit of the adaptor protein 1 complex, which plays a crucial role in clathrin coat assembly and mediates trafficking between trans-Golgi network, endosomes and the plasma membrane. MEDNIK syndrome was first reported in a few French-Canadian families sharing common ancestors, presenting a complex neurocutaneous phenotype, but its pathogenesis is not completely understood. A Sephardic-Jewish patient, carrying a new AP1S1 homozygous mutation, showed severe perturbations of copper metabolism with hypocupremia, hypoceruloplasminemia and liver copper accumulation, along with intrahepatic cholestasis. Zinc acetate treatment strikingly improved clinical conditions, as well as liver copper and bile-acid overload. We evaluated copper-related metabolites and liver function retrospectively in the original French-Canadian patient series. Intracellular copper metabolism and subcellular localization and function of copper pump ATP7A were investigated in patient fibroblasts. Copper metabolism perturbation and hepatopathy were confirmed in all patients. Studies in mutant fibroblasts showed abnormal copper incorporation and retention, reduced expression of copper-dependent enzymes cytochrome-c-oxidase and Cu/Zn superoxide dismutase, and aberrant intracellular trafficking of Menkes protein ATP7A, which normalized after rescue experiments expressing wild-type AP1S1 gene. We solved the pathogenetic mechanism of MEDNIK syndrome, demonstrating that AP1S1 regulates intracellular copper machinery mediated by copper-pump proteins. This multisystem disease is characterized by a unique picture, combining clinical and biochemical signs of both Menkes and Wilson's diseases, in which liver copper overload is treatable by zinc acetate therapy, and can now be listed as a copper metabolism defect in humans. Our results may also contribute to understand the mechanism(s) of intracellular trafficking of copper pumps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.