Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance of naphthalene with increasing HTT. The results demonstrate that biochars are highly heterogeneous materials that, depending on feedstock and HTT, may be suitable for soil application by contributing to the nutrient status and adding recalcitrant C to the soil but also potentially pose ecotoxicological challenges.
Biochar (BC) application as a soil amendment has aroused much interest and was found to considerably improve soil nutrient status and crop yields on poor, tropical soils. However, information on the effect of BC on temperate soils is still insufficient, with effects expected to differ from tropical soils. We investigated the effects of BC on soil nutrient dynamics, crop yield, and quality in a greenhouse pot experiment. We compared three agricultural soils (Planosol, Cambisol, Chernozem), and BCs of three different feedstocks (wheat straw [WS], mixed woodchips [WC], vineyard pruning [VP]) slowly pyrolyzed at 525°C, of which the latter was also pyrolyzed at 400°C. The BCs were applied at two rates (1% and 3%, which would correspond to 30 and 90 t ha–1 in the field). Three crops, namely mustard (Sinapis alba L.), barley (Hordeum vulgare L.), and red clover (Trifolium pretense L.) were grown successively within one year. The investigated soil properties included pH, electrical conductivity (EC), cation‐exchange capacity (CEC), calcium‐acetate‐lactate (CAL)–extractable P (PCAL) and K (KCAL), C, N, and nitrogen‐supplying potential (NSP). The results show a pH increase in all soils. The CEC increased only on the Planosol. The C : N ratio increased at 3% application rate. Despite improving the soil nutrient status partly, yields of the first crop (mustard) and to a lesser extent of the second crop (barley) were significantly depressed through BC application (by up to 68%); the yield of clover as third crop was not affected. Only the BC from WS maintained yields in the range of the control and even increased barley yield by 6%. The initial yield reduction was accompanied by notable decreases (Cu, Fe, Mn, Zn) and increases (Mo) in micronutrient concentrations of plant tissues while nitrogen concentrations were hardly affected. The results of the pot experiment show that despite additional mineral fertilization, short‐term growth inhibition may occur when applying BC without further treatment to temperate soils.
Summary This study investigates (i) the effect of biochar amendments on soil microbial communities in temperate agricultural soils, (ii) the involvement of microorganisms (MOs) in degradation of biochar and (iii) techniques to quantify degradation of biochar in short‐term experiments. The study involved an incubation experiment and a pot experiment with two arable soils (a sandy acidic Planosol and a calcareous loamy Chernozem) amended with 13C‐depleted biochar from wheat husk and willow plants. Phospholipid fatty acids (PLFAs), 13C‐PLFA, CO2, 13C‐CO2, soil organic carbon (Corg) and 13C‐Corg were monitored for 100 days. Effects of biochar application on the soil microorganisms (MOs) were generally minor. In the incubation experiment, microbial biomass was elevated by wheat husk biochar, especially in the Planosol. The increase in PLFAs was attributed to Gram‐negative bacteria and actinomycetes. Fungi and Gram‐positive bacteria were less affected. In the pot experiment, MOs did not respond to the addition of willow biochar. The effects of biochar were mainly attributed to an increase in the pH of the Planosol. Additionally, MOs were probably less responsive to inorganic fertilizer in biochar‐amended soil. In the incubation, only the actinomycetal PLFA 10Me18:0 incorporated biochar C, while in the pot experiment, Gram‐negative bacterial PLFAs (16:1ω7c, 16:1ω5c, 18:1ω7c) and Me16:0 & i17:1ω8 and i17:0 indicated degradation of biochar after 5 weeks. Uptake of around 20% biochar C in these PLFAs was monitored, which accounts for 2% biochar C in the total microbial biomass. From the PLFA data the mean residence time of biochar carbon was estimated in time‐scales of centuries to millennia. The CO2 concentration decreased after biochar addition until its production was masked by root respiration. The use of 13C‐CO2 labelling to estimate degradation was complicated by the interference with an initial negative priming effect and the dissolution/precipitation of carbonate. In conclusion, soil MOs were not particularly affected by addition of biochar, and the effects recorded were mainly attributed to changing environmental conditions after biochar addition. Nonetheless, uptake of 13C label into microbial PLFAs was successfully used to estimate microbial degradation of biochar in short‐term experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.