We present a study on the catalytic reduction of 4-nitrophenol by sodium borohydride in the presence of metal nanoparticles. The nanoparticles are embedded in spherical polyelectrolyte brushes, which consist of a polystyrene core onto which a dense layer of cationic polyelectrolyte brushes are grafted. The average size of the nanoparticles is approximately 2 nm. The kinetic data obtained by monitoring the reduction of 4-nitrophenol by UV/vis-spectroscopy could be explained in terms of the Langmuir−Hinshelwood model: The borohydride ions transfer a surface-hydrogen species in a reversible manner to the surface. Concomitantly 4-nitrophenol is adsorbed and the rate-determining step consists of the reduction of nitrophenol by the surface-hydrogen species. The apparent reaction rate can therefore be related to the total surface S of the nanoparticles, to the kinetic constant k related to the rate-determining step, and to the adsorption constants K
Nip and K
BH4
of nitrophenol and of borohydride, respectively. In all cases, an induction time t
0 was observed of the order of minutes. The reciprocal induction time can be treated as a reaction rate that is directly related to the kinetics of the surface reaction because there is a linear relation between 1/(kt
0) and the concentration of nitrophenol in the solution. All data obtained for t
0 so far and a comparison with data from literature indicate that the induction time is related to a slow surface reconstruction of the nanoparticles, the rate of which is directly related to the surface reaction.
We present a study on the catalytic reduction of 4-nitrophenol (Nip) to 4-aminophenol (Amp) by sodium borohydride (BH 4
−) in the presence of metal nanoparticles in aqueous solution. This reaction which proceeds via the intermediate 4-hydroxylaminophenol has been used abundantly as a model reaction to check the catalytic activity of metallic nanoparticles. Here we present a full kinetic scheme that includes the intermediate 4-hydroxylaminophenol. All steps of the reaction are assumed to proceed solely on the surface of metal nanoparticles (Langmuir−Hinshelwood model). The discussion of the resulting kinetic equations shows that there is a stationary state in which the concentration of the intermediate 4-hydroxylaminophenol stays approximately constant. The resulting kinetic expression had been used previously to evaluate the kinetic constants for this reaction. In this stationary state there are isosbestic points in the UV/vis-spectra which are in full agreement with most published data. We compare the full kinetic equations to experimental data given by the temporal decay of the concentration of Nip. Good agreement is found underlining the general validity of the scheme. The kinetic constants derived from this analysis demonstrate that the second step, namely the reduction of the 4-hydroxylaminophenol is the rate-determining step.
We present a quantitative study of the catalytic activity of well-defined faceted gold-palladium nanoalloys which are immobilized on cationic spherical polyelectrolyte brushes. The spherical polyelectrolyte brush particles used as carriers for the nanoalloys consist of a solid polystyrene core onto which cationic polyelectrolyte chains of 2-aminoethyl methacrylate are attached. Au/Pd nanoalloy particles with sizes in the range from 1 to 3 nm have been generated which are homogeneously distributed on the surface of the spherical polyelectrolyte brushes. The reduction of 4-nitrophenol has been chosen as a well-controlled model reaction allowing us to determine the catalytic activity of the nanoalloys as a function of the Au/Pd composition. The adsorption behavior was studied by Langmuir-Hinshelwood kinetics. We find a pronounced maximum of the catalytic activity at 75 molar % Au. A comparison of gold, platinum, palladium and gold-palladium alloy nanoparticles is made in terms of Langmuir-Hinshelwood kinetics. Density functional calculations for Au/Pd clusters with up to 38 atoms show that the density of states at the Fermi level increases with increasing Pd content, and that the highest occupied orbitals are associated with Pd atoms. The calculations confirm that small changes in the atomic arrangement can lead to pronounced changes in the particles' electronic properties, indicating that the known importance of surface effects is further enhanced in nanoalloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.